ExamGOAL
Books
15
Subjective

Find the mean and variance of the frequency distribution given below.

$x$ $1\le x \le 3$ $3\le x \le 5$ $5\le x \le 7$ $7\le x \le 10$
$f$ 6 4 5 1

Explanation

$x$ $f_i$ $x_i$ $f_i x_i$ $f_i x^2_i$
1-3 6 2 12 24
3-5 4 4 16 64
5-7 5 6 30 180
7-10 1 8.5 8.5 72.25
Total $n=16$ $\Sigma f_i x_i=66.5$ $Sigma f_i x^2_i=340.25$

$\therefore \quad$ Mean $=\frac{\Sigma f_i x_i}{\Sigma f_i}=\frac{66.5}{16}=4.15$

$$\begin{aligned} \text{and}\quad\text { variance } & =\sigma^2=\frac{\Sigma f_i x_i{ }^2}{\Sigma f_i}-\left(\frac{\Sigma f_i x_i}{\Sigma f_i}\right)^2 \\ & =\frac{340.25}{16}-(4.15)^2 \\ & =21.2656-17.2225=4.043 \end{aligned}$$

16
Subjective

Calculate the mean deviation about the mean for the following frequency distribution.

Class interval 0-4 4-8 8-12 12-16 16-20
Frequency 4 6 8 5 2

Explanation

Class interval $f_i$ $x_i$ $f_i x_i$ $d_i=\left|x_i-\bar{x}\right|$ $f_i d_i$
0-4 4 2 8 7.2 28.8
4-8 6 6 36 3.2 19.2
8-12 8 10 80 0.8 6.4
12-16 5 14 70 4.8 24.0
16-20 2 18 36 8.8 17.6
Total $\Sigma f_i=25$ $\Sigma f_i x_i=230$ $\Sigma f_i d_i=96$

$$\begin{array}{ll} \therefore & \text { Mean }=\frac{\Sigma f_i x_i}{\Sigma f_i}=\frac{230}{25}=9.2 \\ \text { and } & \text { mean deviation }=\frac{\Sigma f d_i}{\Sigma f_i}=\frac{96}{25}=3.84 \end{array}$$

17
Subjective

Calculate the mean deviation from the median of the following data.

Class interval 0-6 6-12 12-18 18-24 24-30
Frequency 4 5 3 6 2

Explanation

Class interval $f_i$ $x_i$ $cf$ $d_i=\left|x_i-\bar{m_d}\right|$ $f_i d_i$
0-6 4 3 4 11 44
6-12 5 9 9 5 25
12-18 3 15 12 1 3
18-24 6 21 18 7 42
24-30 2 27 20 13 26
Total $N=20$ $\Sigma f_i d_i=140$

$$\begin{aligned} &\because \quad \frac{N}{2}=\frac{20}{2}=10\\ &\text { So, the median class is 12-18. } \end{aligned}$$

$$\begin{aligned} \therefore \quad \text { Median } & =l+\frac{\frac{N}{2}-c f}{f} \times i \\ & =12+\frac{6}{3}(10-9) \\ & =12+2=14 \\ \mathrm{MD} & =\frac{\Sigma f_i d_i}{\Sigma f_i}=\frac{140}{20}=7 \end{aligned}$$

18
Subjective

Determine the mean and standard deviation for the following distribution.

Marks 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Frequency 1 6 6 8 8 2 2 3 0 2 1 0 0 0 1

Explanation

Marks $f_i$ $f_i x_i$ $d_i=x_i=\bar{x}$ $f_i d_i$ $f_i d^2_i$
2 1 2 $2-6=-4$ $-4$ 16
3 6 18 $3-6=-3$ $18$ 54
4 6 24 $4-6=-2$ $-12$ 24
5 8 40 $5-6=-1$ $-8$ 8
6 8 48 $6-6=0$ 0 0
7 2 14 $7-6=1$ 2 2
8 2 16 $8-6=2$ 4 8
9 3 27 $9-6=3$ 9 27
10 0 0 $10-6=4$ 0 0
11 2 22 $11-6=5$ 10 50
12 1 12 $12-6=6$ 6 36
13 0 0 $13-6=7$ 0 0
14 0 0 $14-6=8$ 0 0
15 0 0 $15-6=9$ 0 0
16 1 16 $16-6=0$ 10 100
Total $\Sigma f_i=40$ $\Sigma f_i x_i=239$ $\Sigma f_i d_i=-1$ $\Sigma f_i x_i^2=325$

$$\begin{aligned} & \therefore \quad \text { Mean } \bar{x}=\frac{\Sigma f_i x_i}{\Sigma t_i}=\frac{239}{40}=5.975 \approx 6 \\ & \text { and } \\ & \sigma=\sqrt{\frac{\sum f_i d_i^2}{\Sigma f_i}-\left(\frac{\Sigma f_i d_i}{\Sigma f_i}\right)^2}=\sqrt{\frac{325}{40}-\left(\frac{-1}{40}\right)^2} \\ & =\sqrt{8.125-0.000625}=\sqrt{8.124375}=2.85 \end{aligned}$$

19
Subjective

The weights of coffee in 70 jars is shown in the following table

Weight (in g) Frequency
200-201 13
201-202 27
202-203 18
203-204 10
204-205 1
205-206 1

Determine variance and standard deviation of the above distribution.

Explanation

$Cl$ $f_i$ $x_i$ $d_i=x_i-\bar{x}$ $f_i d_i$ $f_i d_i^2$
200-201 13 200.5 $-2$ $-26$ 52
201-202 27 201.5 $-1$ $-27$ 27
202-203 18 202.5 0 0 0
203-204 10 203.5 1 10 10
204-205 1 204.5 2 2 4
205-206 1 205.5 3 3 9
$\Sigma f_i=70$ $\Sigma f_i d_i=-38$ $\Sigma f_i d^2_i=102$

$$\begin{aligned} & \therefore \quad \quad \sigma^2=\frac{\Sigma f_i d_i^2}{\Sigma f_i}-\left(\frac{\Sigma f_i d_i}{\Sigma f_i}\right)^2=\frac{102}{70}-\left(\frac{-38}{70}\right)^2 \\ & \text { Now, } \\ & =1.4571-0.2916=1.1655 \\ & \sigma=\sqrt{1.1655}=1.08 \mathrm{~g} \end{aligned}$$