ExamGOAL
Books
20
Subjective

Determine mean and standard deviation of first n terms of an AP whose first term is a and common difference is d.

Explanation

$x_i$ $x_i-a$ $(x_i-a)^2$
$a$ 0 0
$a+d$ $d$ $d^2$
$a+2d$ $2d$ $4d^2$
... ... $9d^2$
... ... ...
... ... ...
$a+(n-1)d$
$\Sigma x_i=\frac{n}{2}[2a+(n-1)]$
$(n-1)d$ $(n-1)^2 d^2$

$$\begin{aligned} \because \quad \text { Mean } & =\frac{\Sigma x_i}{n}=\frac{1}{n}\left[\frac{n}{2}(2 a+(n-1) d]\right. \\ & =a+\frac{(n-1)}{2} d \end{aligned}$$

$$\begin{aligned} & \therefore \quad \Sigma\left(x_i-a\right)=d[1+2+3+\ldots+(n-1) d] \\ & =d \frac{(n-1) n}{2} \\ & \text { and } \\ & \Sigma\left(x_i-a\right)^2=d^2\left[1^2+2^2+3^2+\ldots+(n-1)^2\right] \\ & =\frac{d^2(n-1) n(2 n-1)}{6} \\ & \sigma=\sqrt{\frac{\left(x_i-\mathrm{a}\right)^2}{n}-\left(\frac{x_i-\mathrm{a}}{n}\right)^2} \\ & =\sqrt{\frac{d^2(n-1)(n)(2 n-1)}{6 n}-\left[\frac{d(n-1) n}{2 n}\right]^2} \\ & =\sqrt{\frac{d^2(n-1)(2 n-1)}{6}-\frac{d^2(n-1)^2}{4}} \\ & =d \sqrt{\frac{(n-1)(2 n-1)}{6}-\frac{(n-1)^2}{4}} \\ & =d \sqrt{\frac{(n-1)}{2}\left(\frac{2 n-1}{3}-\frac{n-1}{2}\right)} \\ & =d \sqrt{\frac{(n-1)}{2}\left[\frac{4 n-2-3 n+3}{6}\right]} \\ & =d \sqrt{\frac{(n-1)(n+1)}{12}}=d \sqrt{\frac{\left(n^2-1\right)}{12}} \end{aligned}$$

21
Subjective

Following are the marks obtained, out of 100, by two students Ravi and Hashina in 10 tests.

Ravi 25 50 45 30 70 42 36 48 35 60
Hashina 10 70 50 20 95 55 42 60 48 80

Who is more intelligent and who is more consistent?

Explanation

For Ravi,

$x_i$ $d_i=x_i-45$ $d_i^2$
25 $-20$ 400
50 5 25
45 0 0
30 $-15$ 225
70 25 625
42 $-3$ 9
36 $-9$ 81
48 3 9
35 $-10$ 100
60 15 225
Total $\Sigma d_i=-14$ $\Sigma d^2_i=1699$

$$\begin{aligned} \sigma & =\sqrt{\frac{\Sigma d^2 i}{n}-\left(\frac{\Sigma d_i}{n}\right)^2} \\ & =\sqrt{\frac{1699}{10}-\left(\frac{-14}{10}\right)^2}=\sqrt{169.9-0.0196} \\ & =\sqrt{169.88}=13.03 \\ \text{Now,}\quad \bar{x} & =A+\frac{\Sigma d_i}{\Sigma f_i}=45-\frac{14}{10}=43.6 \end{aligned}$$

For Hashina,

$x_i$ $d_i=x_i-55$ $d_i^2$
10 $-45$ 2025
70 25 625
50 $-5$ 25
20 $-35$ 1225
95 40 1600
55 0 0
42 $-13$ 169
60 5 25
48 $-7$ 49
80 25 625
Total $\Sigma d_i=0$ $\Sigma d^2_i=6368$

$$\begin{aligned} &\begin{array}{ll} \because & \text { Mean }=55 \\ \therefore & \sigma=\sqrt{\frac{6368}{10}}=\sqrt{636.8}=25.2 \\ \text { For Ravi, } & C V=\frac{\sigma}{\bar{x}} \times 100=\frac{13.03}{43.6} \times 100=29.88 \\ \text { For Hashina, } & C V=\frac{\sigma}{\bar{x}} \times 100=\frac{25.2}{55} \times 100=45.89 \end{array}\\ &\text { Hence, Hashina is more consistent and intelligent. } \end{aligned}$$

22
Subjective

Mean and standard deviation of 100 observations were found to be 40 and 10 , respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, then find the correct standard deviation.

Explanation

$$\begin{aligned} &\begin{aligned} \text { Given, }\quad n=100, \bar{x}=40, \sigma & =10 \text { and } \bar{x}=40 \\ \therefore\quad \frac{\Sigma x_i}{n} & =40 \\ \Rightarrow\quad \frac{\Sigma x_i}{100} & =40 \\ \Rightarrow\quad\Sigma x_i & =4000 \\ \text { Corrected } \Sigma x_i & =4000-30-70+3+27 \\ \therefore\quad & =4030-100=3930 \\ \text { Corrected mean } & =\frac{2930}{100}=39.3 \end{aligned} \end{aligned}$$

$$\begin{aligned} \text{Now,}\quad & \sigma^2=\frac{\Sigma x_i^2}{n}-(40)^2 \\ \Rightarrow\quad & 100=\frac{\Sigma x_i^2}{100}-1600 \\ \Rightarrow\quad & \Sigma x_i^2=170000 \\ & \text { Now, } \quad \text { Corrected } \Sigma x_i^2=170000-(30)^2-(70)^2+3^2+(27)^2 \\ & =164939 \\ & \text { Corrected } \sigma=\sqrt{\frac{164939}{100}-(39.3)^2} \\ & =\sqrt{1649.39-39.3 \times 39.3} \\ & =\sqrt{1649.39-1544.49} \\ & =\sqrt{104.9}=10.24 \end{aligned}$$

23
Subjective

3 While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25 . He obtained the mean and variance as 45 and 16, respectively. Find the correct mean and the variance.

Explanation

$$\begin{aligned} & \text { Given, } \quad n=10, \bar{x}=45 \text { and } \sigma^2=16 \\ & \therefore \quad \bar{x}=45 \Rightarrow \frac{\Sigma x_i}{n}=45 \\ & \Rightarrow \quad \frac{\Sigma x_i}{10}=45 \Rightarrow \Sigma x_i=450 \\ & \text { Corrected } \Sigma x_i=450-52+25=423 \\ \therefore\quad & \bar{x}=\frac{423}{10}=42.3 \\ & \sigma^2=\frac{\Sigma x_i^2}{n}-\left(\frac{\Sigma x_i}{n}\right)^2 \\ & 16=\frac{\Sigma x_i^2}{10}-(45)^2 \\ & \Sigma x_i^2=10(2025+16) \\ & \Sigma x_i^2=20410 \\ & \therefore \quad \text { Corrected } \Sigma x_i^2=20410-(52)^2+(25)^2=18331 \\ & \text { and } \quad \text { corrected } \sigma^2=\frac{18331}{10}-(42.3)^2=43.81 \end{aligned} $$

24
MCQ (Single Correct Answer)

The mean deviation of the data $3,10,10,4,7,10,5$ from the mean is

A
2
B
2.57
C
3
D
3.75