ExamGOAL
Books
9
Subjective

The frequency distribution

$x$ A 2A 3A 4A 5A 6A
$f$ 2 1 1 1 1 1

where, A is a positive integer, has a variance of 160. Determine the value of A.

Explanation

$x$ $f_i$ $f_i x_i$ $f_i x^2_i$
$A$ 2 $2A$ $2A^2$
$2A$ 1 $2A$ $4A^2$
$3A$ 1 $3A$ $9A^2$
$4A$ 1 $4A$ $16A^2$
$5A$ 1 $5A$ $25A^2$
$6A$ 1 $6A$ $36A^2$
Total 7 $22A$ $92A^2$
$n=7$ $\Sigma f_in_i=22A$ $\Sigma f_i n^2_i=92A^2$

$$\begin{array}{ll} \therefore & \sigma^2=\frac{\Sigma f_i x_i^2}{n}-\left(\frac{\Sigma f_i x_i}{n}\right)^2 \\ \Rightarrow & 160=\frac{92 A^2}{7}-\left(\frac{22 A}{7}\right)^2 \\ \Rightarrow & 160=\frac{92 A^2}{7}-\frac{484 A^2}{49} \\ \Rightarrow & 160=(644-484) \frac{A^2}{49} \\ \Rightarrow & 160=\frac{160 A^2}{49} \Rightarrow A^2=49 \\ \therefore & A=7 \end{array}$$

10
Subjective

For the frequency distribution

$x$ 2 3 4 5 6 7
$f$ 4 9 16 14 11 6

Find the standard distribution.

Explanation

$x_i$ $f_i$ $d_i=x_i-4$ $f_i d_i$ $f_i d^2_i$
2 4 $-$2 $-$8 16
3 9 $-$1 $-$9 9
4 16 0 0 0
5 14 1 14 14
6 11 2 22 44
7 6 3 18 54
Total 60 $\Sigma f_i d_i=37$ $\Sigma f_i d^2_i=137$

$$\begin{aligned} \therefore \quad \mathrm{SD} & =\sqrt{\frac{\Sigma f_i d_i^2}{N}-\left(\frac{\Sigma f_i d_i}{N}\right)^2} \\ & =\sqrt{\frac{137}{60}-\left(\frac{37}{60}\right)^2} \\ & =\sqrt{2.2833-(0.616)^2} \\ & =\sqrt{2.2833-0.3794} \\ & =\sqrt{1.9037}=1.38 \end{aligned}$$

11
Subjective

There are 60 students in a class. The following is the frequency distribution of the marks obtained by the students in a test.

Marks 0 1 2 3 4 5
Frequency $x-2$ $x$ $x^2$ $(x+1)^2$ $2x$ $x+1$

where, x is positive integer. Determine the mean and standard deviation of the marks.

Explanation

$\therefore$ Sum of frequencies,

$$\begin{array}{l} & x-2+x+x^2+(x+1)^2+2 x+x+1 & =60 \\ \Rightarrow \quad & 2 x-2+x^2+x^2+1+2 x+2 x+x+1 =60 \\ \Rightarrow \quad & 2 x^2+7 x =60 \\ \Rightarrow & 2 x^2+7 x-60 =0 \\ \Rightarrow & 2 x^2+15 x-8 x-60 =0 \\ \Rightarrow & x(2 x+15)-4(2 x+15) =0 \\ \Rightarrow & (2 x+15)(x-4) =0 \\ \Rightarrow & x =-\frac{15}{2}, 4 \\ \Rightarrow & x =-\frac{15}{2} \quad \text{[inaddmisible]} [\because x \in I^+] \end{array}$$

$x_i$ $f_i$ $d_i=x_i-3$ $f_i d_i$ $f_i d^2_i$
0 2 $-$3 $-$6 18
2 4 $-$2 $-$8 16
2 16 $-$1 $-$16 16
$A=3$ 25 0 0 0
4 8 1 8 8
5 5 2 10 20
Total $\Sigma f_i=60$ $\Sigma f_i d_i=-12$ $Sigma f_i d^2_i=78$

$$\begin{aligned} \text { Mean } & =A+\frac{\Sigma f_i d_i}{\Sigma f_i}=3+\left(\frac{-12}{60}\right)=2.8 \\ \sigma & =\sqrt{\frac{\Sigma f_i d_i^2}{\Sigma f_i}-\left(\frac{\Sigma f_i d_i}{\Sigma f_i}\right)^2}=\sqrt{\frac{78}{60}-\left(\frac{-12}{60}\right)^2} \\ & =\sqrt{1.3-0.04}=\sqrt{1.26}=1.12 \end{aligned}$$

12
Subjective

The mean life of a sample of 60 bulbs was 650 h and the standard deviation was 8 h . If a second sample of 80 bulbs has a mean life of 660 h and standard deviation 7 h , then find the over all standard deviation.

Explanation

Here, $n_1=60, \bar{x}_1=650, s_1=8$ and $n_2=80, \bar{x}_2=660, s_2=7$

$$\begin{aligned} \therefore \quad \sigma & =\sqrt{\frac{n_1 s_1^2+n_2 s_2^2}{n_1+n_2}+\frac{n_1 n_2\left(\bar{x}_1-\bar{x}_2\right)^2}{\left(n_1+n_2\right)^2}} \\ & =\sqrt{\frac{60 \times(8)^2+80 \times(7)^2}{60+80}+\frac{60 \times 80(650-660)^2}{(60+80)^2}} \\ & =\sqrt{\frac{6 \times 64+8 \times 49}{14}+\frac{60 \times 80 \times 100}{140 \times 140}} \\ & =\sqrt{\frac{192+196}{7}+\frac{1200}{49}}=\sqrt{\frac{388}{7}+\frac{1200}{49}} \\ & =\sqrt{\frac{2716+1200}{49}}=\sqrt{\frac{3916}{49}}=\frac{62.58}{7}=8.9 \end{aligned}$$

13
Subjective

If mean and standard deviation of 100 items are 50 and 4 respectively, then find the sum of all the item and the sum of the squares of item.

Explanation

$$\begin{aligned} &\text { Here, } \bar{x}=50, n=100 \text { and } \sigma=4\\ &\begin{array}{ll} \therefore & \frac{\Sigma x_i}{100}=50 \\ \Rightarrow & \Sigma x_i=5000 \\ \text { and } & \sigma^2=\frac{\Sigma f_i x_i^2}{\Sigma f_i}-\left(\frac{\Sigma f_i x_i}{\Sigma f_i}\right)^2 \\ \Rightarrow & (4)^2=\frac{\Sigma f_i x_i^2}{100}-(50)^2 \\ \Rightarrow & 16=\frac{\Sigma f_i x_i^2}{100}-2500 \\ \Rightarrow & \frac{\Sigma f_i x_i^2}{100}=16+2500=2516 \\ \therefore & \Sigma f_i x_i^2=251600 \end{array} \end{aligned}$$