ExamGOAL
Books
Subjective
1

For a positive integer $n$, find the value of $(1-i)^n\left(1-\frac{1}{i}\right)^n$.

2

Evaluate $\sum_\limits{n=1}^{13}\left(i^n+i^{n+1}\right)$, where $n \in N$

3

If $\left(\frac{1+i}{1-i}\right)^3-\left(\frac{1-i}{1+i}\right)^3=x+i y$, then find $(x, y)$

4

If $\frac{(1+i)^2}{2-i}=x+i y$, then find the value of $x+y$

5

If $\left(\frac{1-i}{1+i}\right)^{100}=a+i b$, then find $(a, b)$

6

If $a=\cos \theta+i \sin \theta$, then find the value of $\frac{1+a}{1-a}$

7

If $(1+i) z=(1-i) \bar{z}$, then show that $z=-i \bar{z}$.

8

If $z=x+i y$, then show that $z \bar{z}+2(z+\bar{z})+b=0$, where $b \in R$, represents a circle.

9

If the real part of $\frac{\bar{z}+2}{\bar{z}-1}$ is 4 , then show that the locus of the point representing $z$ in the complex plane is a circle.

10

Show that the complex number $z$, satisfying the condition arg $\left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$ lies on a circle.

11

Solve the equation $|z|=z+1+2 i$

12

12 If $|z+1|=z+2(1+i)$, then find the value of $z$.

13

If $\arg (z-1)=\arg (z+3 i)$, then find $x-1: y$, where $z=x+i y$.

14

Show that $\left|\frac{z-2}{z-3}\right|=2$ represents a circle. Find its centre and radius.

15

If $\frac{z-1}{z+1}$ is a purely imaginary number $(z \neq-1)$, then find the value of $|z|$.

16

$z_1$ and $z_2$ are two complex numbers such that $\left|z_1\right|=\left|z_2\right|$ and $\arg \left(z_1\right)+\arg \left(z_2\right)=\pi$, then show that $z_1=-\bar{z}_2$.

17

If $\left|z_1\right|=1\left(z_1 \neq-1\right)$ and $z_2=\frac{z_1-1}{z_1+1}$, then show that the real part of $z_2$ is zero.

18

If $z_1, z_2$ and $z_3, z_4$ are two pairs of conjugate complex numbers, then find arg $\left(\frac{z_1}{z_4}\right)+\arg \left(\frac{z_2}{z_3}\right)$

19

If $\left|z_1\right|=\left|z_2\right|=\cdots=\left|z_n\right|=1$, then show that $$ \left|z_1+z_2+z_3+\cdots+z_n\right|=\left|\frac{1}{z_1}+\frac{1}{z_2}+\frac{1}{z_3}+\cdots+\frac{1}{z_n}\right| \text {. }$$

20

If the complex numbers $z_1$ and $z_2, \arg \left(z_1\right)-\arg \left(z_2\right)=0$, then show that $\left|z_1-z_2\right|=\left|z_1\right|-\left|z_2\right|$.

21

Solve the system of equations $\operatorname{Re}\left(z^2\right)=0,|z|=2$.

22

Find the complex number satisfying the equation $z+\sqrt{2}|(z+1)|+i=0$.

23

Write the complex number $z=\frac{1-i}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ in polar form.

24

If $z$ and $w$ are two complex numbers such that $|z w|=1$ and $\arg (z)-\arg (w)=\frac{\pi}{2}$, then show that $\bar{z} w=-i$.

25

Fill in the blanks of the following.

(i) For any two complex numbers $z_1, z_2$ and any real numbers $a, b$, $\left|a z_1-b z_2\right|^2+\left|b z_1+a z_2\right|^2=\cdots$

(ii) The value of $\sqrt{-25} \times \sqrt{-9}$ is ...

(iii) The number $\frac{(1-i)^3}{1-i^3}$ is equal to ...

(iv) The sum of the series $i+i^2+i^3+\cdots$ upto 1000 terms is $\ldots$

(v) Multiplicative inverse of $1+i$ is $\ldots$

(vi) If $z_1$ and $z_2$ are complex numbers such that $z_1+z_2$ is a real number, then $z_1=\cdots$

(vii) $\arg (z)+\arg \bar{z}$ where, $(\bar{z} \neq 0)$ is $\ldots$

(viii) If $|z+4| \leq 3$, then the greatest and least values of $|z+1|$ are $\ldots$ and ...

(ix) If $\left|\frac{z-2}{z+2}\right|=\frac{\pi}{6}$, then the locus of $z$ is ...

(x) If $|z|=4$ and $\arg (z)=\frac{5 \pi}{6}$, then $z=\cdots$

34

Match the statements of Column A and Column B.

Column A Column B
(i) The polar form of $i+\sqrt{3}$ is (a) Perpendicular bisector of segment joining $(-2,0)$ and $(2,0)$.
(ii) The amplitude of $-1+\sqrt{-3}$ is (b) On or outside the circle having centre of $(0,-4)$ and radius 3.
(iii) It $|z+2|=|z-2|$, then locus of z is (c) $\frac{2\pi}{3}$
(iv) It $|z+2i|=|z-2i|$, then locus of z is (d) Perpendicular bisector of segment joining $(0,-2)$ and $(0,2)$.
(v) Region represented by (e) $2\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)$
(vi) Region represented by $|z+4|\le3$ is (f) On or inside the circle having centre $(-4,0)$ and radius 3 units.
(vii) Conjugate of $\frac{1+2i}{1-i}$ lies in (g) First quadrant
(viii) Reciprocal of $1-i$ lies in (h) Third quadrant

35

What is the conjugate of $\frac{2-i}{(1-2 i)^2}$ ?

36

If $\left|z_1\right|=\left|z_2\right|$, is it necessary that $z_1=z_2$.

37

If $\frac{\left(a^2+1\right)^2}{2 a-i}=x+i y$, then what is the value of $x^2+y^2$ ?

38

Find the value of $z$, if $|z|=4$ and $\arg (z)=\frac{5 \pi}{6}$.

39

Find the value of $\left|(1+i) \frac{(2+i)}{(3+i)}\right|$.

40

Find the principal argument of $(1+i\sqrt3)^2$.

41

Where does $z$ lie, if $\left|\frac{z-5 i}{z+5 i}\right|=1$ ?

True of False
MCQ Single Correct