Give an example of a statement $P(n)$ which is true for all $n \geq 4$ but $P(1)$, $P(2)$ and $P(3)$ are not true. Justify your answer.
Give an example of a statement $P(n)$ which is true for all $n$. Justify your answer.
$4^n-1$ is divisible by 3, for each natural number n.
$2^{3 n}-1$ is divisible by 7 , for all natural numbers $n$.
$n^3-7 n+3$ is divisible by 3 , for all natural numbers $n$.
$3^{2 n}-1$ is divisible by 8, for all natural numbers $n$.
For any natural numbers $n, 7^n-2^n$ is divisible by 5.
For any natural numbers $n, x^n-y^n$ is divisible by $x-y$, where $x$ and $y$ are any integers with $x \neq y$.
$n^3-n$ is divisible by 6, for each natural number $n\ge2$.
$n\left(n^2+5\right)$ is divisible by 6 , for each natural number $n$.
$n^2<2^n$, for all natural numbers $n \geq 5$.
$122 n<(n+2)$ ! for all natural numbers $n$.
$\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\supset+\frac{1}{\sqrt{n}}$, for all natural numbers $n \geq 2$.
$142+4+6+\supset+2 n=n^2+n$, for all natural numbers $n$.
$1+2+2^2+\supset+2^n=2^{n+1}-1$ for all natural numbers $n$.
$1+5+9+\supset+(4 n-3)=n(2 n-1)$, for all natural numbers $n$.
A sequence $a_1, a_2, a_3, \ldots$ is defined by letting $a_1=3$ and $a_k=7 a_{k-1}$, for all natural numbers $k \geq 2$. Show that $a_n=3 \cdot 7^{n-1}$ for all natural numbers.
A sequence $b_0, b_1, b_2, \ldots$ is defined by letting $b_0=5$ and $b_k=4+b_{k-1}$, for all natural numbers $k$. Show that $b_n=5+4 n$, for all natural number $n$ using mathematical induction.
A sequence $d_1, d_2, d_3, \ldots$ is defined by letting $d_1=2$ and $d_k=\frac{d_{k-1}}{k}$, for all natural numbers, $k \geq 2$. Show that $d_n=\frac{2}{n!}$, for all $n \in N$.
Prove that for all $n \in N$ $$ \begin{aligned} \cos \alpha+ & \cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\supset+\cos [\alpha+(n-1) \beta] \\ = & \frac{\cos \left[\alpha+\left(\frac{n-1}{2}\right) \beta\right] \sin \left(\frac{n \beta}{2}\right)}{\sin \frac{\beta}{2}} \end{aligned}$$
Prove that $\cos \theta \cos 2 \theta \cos 2^2 \theta D \cos 2^{n-1} \theta=\frac{\sin 2^n \theta}{2^n \sin \theta}, \forall n \in N$
$$ \begin{aligned} & \text { Prove that, } \sin \theta+\sin 2 \theta+\sin 3 \theta+\supset+\sin n \theta=\frac{\frac{\sin n \theta}{2} \sin \frac{(n+1)}{2} \theta}{\sin \frac{\theta}{2}} \text {, } \\ & \text { for all } n \in N \text {. } \end{aligned} $$
Show that $\frac{n^5}{5}+\frac{n^3}{3}+\frac{7 n}{15}$ is a natural number, for all $n \in N$.
Prove that $\frac{1}{n+1}+\frac{1}{n+2}+\supset+\frac{1}{2 n}>\frac{13}{24}$, for all natural numbers $n>1$.
Prove that number of subsets of a set containing $n$ distinct elements is $2^n$, for all $n \in N$.