ExamGOAL
Books
12
Subjective

The mean life of a sample of 60 bulbs was 650 h and the standard deviation was 8 h . If a second sample of 80 bulbs has a mean life of 660 h and standard deviation 7 h , then find the over all standard deviation.

Explanation

Here, $n_1=60, \bar{x}_1=650, s_1=8$ and $n_2=80, \bar{x}_2=660, s_2=7$

$$\begin{aligned} \therefore \quad \sigma & =\sqrt{\frac{n_1 s_1^2+n_2 s_2^2}{n_1+n_2}+\frac{n_1 n_2\left(\bar{x}_1-\bar{x}_2\right)^2}{\left(n_1+n_2\right)^2}} \\ & =\sqrt{\frac{60 \times(8)^2+80 \times(7)^2}{60+80}+\frac{60 \times 80(650-660)^2}{(60+80)^2}} \\ & =\sqrt{\frac{6 \times 64+8 \times 49}{14}+\frac{60 \times 80 \times 100}{140 \times 140}} \\ & =\sqrt{\frac{192+196}{7}+\frac{1200}{49}}=\sqrt{\frac{388}{7}+\frac{1200}{49}} \\ & =\sqrt{\frac{2716+1200}{49}}=\sqrt{\frac{3916}{49}}=\frac{62.58}{7}=8.9 \end{aligned}$$

13
Subjective

If mean and standard deviation of 100 items are 50 and 4 respectively, then find the sum of all the item and the sum of the squares of item.

Explanation

$$\begin{aligned} &\text { Here, } \bar{x}=50, n=100 \text { and } \sigma=4\\ &\begin{array}{ll} \therefore & \frac{\Sigma x_i}{100}=50 \\ \Rightarrow & \Sigma x_i=5000 \\ \text { and } & \sigma^2=\frac{\Sigma f_i x_i^2}{\Sigma f_i}-\left(\frac{\Sigma f_i x_i}{\Sigma f_i}\right)^2 \\ \Rightarrow & (4)^2=\frac{\Sigma f_i x_i^2}{100}-(50)^2 \\ \Rightarrow & 16=\frac{\Sigma f_i x_i^2}{100}-2500 \\ \Rightarrow & \frac{\Sigma f_i x_i^2}{100}=16+2500=2516 \\ \therefore & \Sigma f_i x_i^2=251600 \end{array} \end{aligned}$$

14
Subjective

If for distribution $\Sigma(x-5)=3, \Sigma(x-5)^2=43$ and total number of item is 18 . Find the mean and standard deviation.

Explanation

$$\begin{aligned} & \text { Given, } \quad n=18, \Sigma(x-5)=3 \text { and } \Sigma(x-5)^2=43 \\ & \therefore \quad \text { Mean }=A+\frac{\Sigma(x-5)}{18} \\ & =5+\frac{3}{18}=5+0.1666=5.1666=5.17 \\ & \text { and } \quad \mathrm{SD}=\sqrt{\frac{\sum(x-5)^2}{n}-\left(\frac{\Sigma(x-5)}{n}\right)^2} \\ & =\sqrt{\frac{43}{18}-\left(\frac{3}{18}\right)^2} \\ & =\sqrt{2.3944-(0.166)^2}=\sqrt{2.3944-0.2755}=1.59 \end{aligned}$$

15
Subjective

Find the mean and variance of the frequency distribution given below.

$x$ $1\le x \le 3$ $3\le x \le 5$ $5\le x \le 7$ $7\le x \le 10$
$f$ 6 4 5 1

Explanation

$x$ $f_i$ $x_i$ $f_i x_i$ $f_i x^2_i$
1-3 6 2 12 24
3-5 4 4 16 64
5-7 5 6 30 180
7-10 1 8.5 8.5 72.25
Total $n=16$ $\Sigma f_i x_i=66.5$ $Sigma f_i x^2_i=340.25$

$\therefore \quad$ Mean $=\frac{\Sigma f_i x_i}{\Sigma f_i}=\frac{66.5}{16}=4.15$

$$\begin{aligned} \text{and}\quad\text { variance } & =\sigma^2=\frac{\Sigma f_i x_i{ }^2}{\Sigma f_i}-\left(\frac{\Sigma f_i x_i}{\Sigma f_i}\right)^2 \\ & =\frac{340.25}{16}-(4.15)^2 \\ & =21.2656-17.2225=4.043 \end{aligned}$$

16
Subjective

Calculate the mean deviation about the mean for the following frequency distribution.

Class interval 0-4 4-8 8-12 12-16 16-20
Frequency 4 6 8 5 2

Explanation

Class interval $f_i$ $x_i$ $f_i x_i$ $d_i=\left|x_i-\bar{x}\right|$ $f_i d_i$
0-4 4 2 8 7.2 28.8
4-8 6 6 36 3.2 19.2
8-12 8 10 80 0.8 6.4
12-16 5 14 70 4.8 24.0
16-20 2 18 36 8.8 17.6
Total $\Sigma f_i=25$ $\Sigma f_i x_i=230$ $\Sigma f_i d_i=96$

$$\begin{array}{ll} \therefore & \text { Mean }=\frac{\Sigma f_i x_i}{\Sigma f_i}=\frac{230}{25}=9.2 \\ \text { and } & \text { mean deviation }=\frac{\Sigma f d_i}{\Sigma f_i}=\frac{96}{25}=3.84 \end{array}$$