Calculate the mean deviation from the median of the following data.
Class interval | 0-6 | 6-12 | 12-18 | 18-24 | 24-30 |
---|---|---|---|---|---|
Frequency | 4 | 5 | 3 | 6 | 2 |
Class interval | $f_i$ | $x_i$ | $cf$ | $d_i=\left|x_i-\bar{m_d}\right|$ | $f_i d_i$ |
---|---|---|---|---|---|
0-6 | 4 | 3 | 4 | 11 | 44 |
6-12 | 5 | 9 | 9 | 5 | 25 |
12-18 | 3 | 15 | 12 | 1 | 3 |
18-24 | 6 | 21 | 18 | 7 | 42 |
24-30 | 2 | 27 | 20 | 13 | 26 |
Total | $N=20$ | $\Sigma f_i d_i=140$ |
$$\begin{aligned} &\because \quad \frac{N}{2}=\frac{20}{2}=10\\ &\text { So, the median class is 12-18. } \end{aligned}$$
$$\begin{aligned} \therefore \quad \text { Median } & =l+\frac{\frac{N}{2}-c f}{f} \times i \\ & =12+\frac{6}{3}(10-9) \\ & =12+2=14 \\ \mathrm{MD} & =\frac{\Sigma f_i d_i}{\Sigma f_i}=\frac{140}{20}=7 \end{aligned}$$
Determine the mean and standard deviation for the following distribution.
Marks | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequency | 1 | 6 | 6 | 8 | 8 | 2 | 2 | 3 | 0 | 2 | 1 | 0 | 0 | 0 | 1 |
Marks | $f_i$ | $f_i x_i$ | $d_i=x_i=\bar{x}$ | $f_i d_i$ | $f_i d^2_i$ |
---|---|---|---|---|---|
2 | 1 | 2 | $2-6=-4$ | $-4$ | 16 |
3 | 6 | 18 | $3-6=-3$ | $18$ | 54 |
4 | 6 | 24 | $4-6=-2$ | $-12$ | 24 |
5 | 8 | 40 | $5-6=-1$ | $-8$ | 8 |
6 | 8 | 48 | $6-6=0$ | 0 | 0 |
7 | 2 | 14 | $7-6=1$ | 2 | 2 |
8 | 2 | 16 | $8-6=2$ | 4 | 8 |
9 | 3 | 27 | $9-6=3$ | 9 | 27 |
10 | 0 | 0 | $10-6=4$ | 0 | 0 |
11 | 2 | 22 | $11-6=5$ | 10 | 50 |
12 | 1 | 12 | $12-6=6$ | 6 | 36 |
13 | 0 | 0 | $13-6=7$ | 0 | 0 |
14 | 0 | 0 | $14-6=8$ | 0 | 0 |
15 | 0 | 0 | $15-6=9$ | 0 | 0 |
16 | 1 | 16 | $16-6=0$ | 10 | 100 |
Total | $\Sigma f_i=40$ | $\Sigma f_i x_i=239$ | $\Sigma f_i d_i=-1$ | $\Sigma f_i x_i^2=325$ |
$$\begin{aligned} & \therefore \quad \text { Mean } \bar{x}=\frac{\Sigma f_i x_i}{\Sigma t_i}=\frac{239}{40}=5.975 \approx 6 \\ & \text { and } \\ & \sigma=\sqrt{\frac{\sum f_i d_i^2}{\Sigma f_i}-\left(\frac{\Sigma f_i d_i}{\Sigma f_i}\right)^2}=\sqrt{\frac{325}{40}-\left(\frac{-1}{40}\right)^2} \\ & =\sqrt{8.125-0.000625}=\sqrt{8.124375}=2.85 \end{aligned}$$
The weights of coffee in 70 jars is shown in the following table
Weight (in g) | Frequency |
---|---|
200-201 | 13 |
201-202 | 27 |
202-203 | 18 |
203-204 | 10 |
204-205 | 1 |
205-206 | 1 |
Determine variance and standard deviation of the above distribution.
$Cl$ | $f_i$ | $x_i$ | $d_i=x_i-\bar{x}$ | $f_i d_i$ | $f_i d_i^2$ |
---|---|---|---|---|---|
200-201 | 13 | 200.5 | $-2$ | $-26$ | 52 |
201-202 | 27 | 201.5 | $-1$ | $-27$ | 27 |
202-203 | 18 | 202.5 | 0 | 0 | 0 |
203-204 | 10 | 203.5 | 1 | 10 | 10 |
204-205 | 1 | 204.5 | 2 | 2 | 4 |
205-206 | 1 | 205.5 | 3 | 3 | 9 |
$\Sigma f_i=70$ | $\Sigma f_i d_i=-38$ | $\Sigma f_i d^2_i=102$ |
$$\begin{aligned} & \therefore \quad \quad \sigma^2=\frac{\Sigma f_i d_i^2}{\Sigma f_i}-\left(\frac{\Sigma f_i d_i}{\Sigma f_i}\right)^2=\frac{102}{70}-\left(\frac{-38}{70}\right)^2 \\ & \text { Now, } \\ & =1.4571-0.2916=1.1655 \\ & \sigma=\sqrt{1.1655}=1.08 \mathrm{~g} \end{aligned}$$
Determine mean and standard deviation of first n terms of an AP whose first term is a and common difference is d.
$x_i$ | $x_i-a$ | $(x_i-a)^2$ |
---|---|---|
$a$ | 0 | 0 |
$a+d$ | $d$ | $d^2$ |
$a+2d$ | $2d$ | $4d^2$ |
... | ... | $9d^2$ |
... | ... | ... |
... | ... | ... |
$a+(n-1)d$ $\Sigma x_i=\frac{n}{2}[2a+(n-1)]$ |
$(n-1)d$ | $(n-1)^2 d^2$ |
$$\begin{aligned} \because \quad \text { Mean } & =\frac{\Sigma x_i}{n}=\frac{1}{n}\left[\frac{n}{2}(2 a+(n-1) d]\right. \\ & =a+\frac{(n-1)}{2} d \end{aligned}$$
$$\begin{aligned} & \therefore \quad \Sigma\left(x_i-a\right)=d[1+2+3+\ldots+(n-1) d] \\ & =d \frac{(n-1) n}{2} \\ & \text { and } \\ & \Sigma\left(x_i-a\right)^2=d^2\left[1^2+2^2+3^2+\ldots+(n-1)^2\right] \\ & =\frac{d^2(n-1) n(2 n-1)}{6} \\ & \sigma=\sqrt{\frac{\left(x_i-\mathrm{a}\right)^2}{n}-\left(\frac{x_i-\mathrm{a}}{n}\right)^2} \\ & =\sqrt{\frac{d^2(n-1)(n)(2 n-1)}{6 n}-\left[\frac{d(n-1) n}{2 n}\right]^2} \\ & =\sqrt{\frac{d^2(n-1)(2 n-1)}{6}-\frac{d^2(n-1)^2}{4}} \\ & =d \sqrt{\frac{(n-1)(2 n-1)}{6}-\frac{(n-1)^2}{4}} \\ & =d \sqrt{\frac{(n-1)}{2}\left(\frac{2 n-1}{3}-\frac{n-1}{2}\right)} \\ & =d \sqrt{\frac{(n-1)}{2}\left[\frac{4 n-2-3 n+3}{6}\right]} \\ & =d \sqrt{\frac{(n-1)(n+1)}{12}}=d \sqrt{\frac{\left(n^2-1\right)}{12}} \end{aligned}$$
Following are the marks obtained, out of 100, by two students Ravi and Hashina in 10 tests.
Ravi | 25 | 50 | 45 | 30 | 70 | 42 | 36 | 48 | 35 | 60 |
---|---|---|---|---|---|---|---|---|---|---|
Hashina | 10 | 70 | 50 | 20 | 95 | 55 | 42 | 60 | 48 | 80 |
Who is more intelligent and who is more consistent?
For Ravi,
$x_i$ | $d_i=x_i-45$ | $d_i^2$ |
---|---|---|
25 | $-20$ | 400 |
50 | 5 | 25 |
45 | 0 | 0 |
30 | $-15$ | 225 |
70 | 25 | 625 |
42 | $-3$ | 9 |
36 | $-9$ | 81 |
48 | 3 | 9 |
35 | $-10$ | 100 |
60 | 15 | 225 |
Total | $\Sigma d_i=-14$ | $\Sigma d^2_i=1699$ |
$$\begin{aligned} \sigma & =\sqrt{\frac{\Sigma d^2 i}{n}-\left(\frac{\Sigma d_i}{n}\right)^2} \\ & =\sqrt{\frac{1699}{10}-\left(\frac{-14}{10}\right)^2}=\sqrt{169.9-0.0196} \\ & =\sqrt{169.88}=13.03 \\ \text{Now,}\quad \bar{x} & =A+\frac{\Sigma d_i}{\Sigma f_i}=45-\frac{14}{10}=43.6 \end{aligned}$$
For Hashina,
$x_i$ | $d_i=x_i-55$ | $d_i^2$ |
---|---|---|
10 | $-45$ | 2025 |
70 | 25 | 625 |
50 | $-5$ | 25 |
20 | $-35$ | 1225 |
95 | 40 | 1600 |
55 | 0 | 0 |
42 | $-13$ | 169 |
60 | 5 | 25 |
48 | $-7$ | 49 |
80 | 25 | 625 |
Total | $\Sigma d_i=0$ | $\Sigma d^2_i=6368$ |
$$\begin{aligned} &\begin{array}{ll} \because & \text { Mean }=55 \\ \therefore & \sigma=\sqrt{\frac{6368}{10}}=\sqrt{636.8}=25.2 \\ \text { For Ravi, } & C V=\frac{\sigma}{\bar{x}} \times 100=\frac{13.03}{43.6} \times 100=29.88 \\ \text { For Hashina, } & C V=\frac{\sigma}{\bar{x}} \times 100=\frac{25.2}{55} \times 100=45.89 \end{array}\\ &\text { Hence, Hashina is more consistent and intelligent. } \end{aligned}$$