Which of the following complexes formed by $\mathrm{Cu}^{2+}$ ions is most stable?
The colour of the coordination compounds depends on the crystal field splitting. What will be the correct order of absorption of wavelength of light in the visible region, for the complexes, $\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_6\right]^{3+},\left[\mathrm{Co}(\mathrm{CN})_6\right]^{3-}$, $\left[\mathrm{Co}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{3+}$
When $0.1 \mathrm{~mol} \mathrm{CoCl}{ }_3\left(\mathrm{NH}_3\right)_5$ is treated with excess of $\mathrm{AgNO}_3, 0.2 \mathrm{~mol}$ of AgCl are obtained. The conductivity of solution will correspond to
When 1 mole of $\mathrm{CrCl}_3 \cdot 6 \mathrm{H}_2 \mathrm{O}$ is treated with excess of $\mathrm{AgNO}_3, 3$ moles of AgCl are obtained. The formula of the complex is
The correct IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_3\right)_2 \mathrm{Cl}_2\right]$ is
The stabilisation of coordination compounds due to chelation is called the chelate effect. Which of the following is the most stable complex species?
Indicate the complex ion which shows geometrical isomerism.
The CFSE for octahedral $\left[\mathrm{CoCl}_6\right]^{4-}$ is $18,000 \mathrm{~cm}^{-1}$. The CFSE for tetrahedral $\left[\mathrm{CoCl}_4\right]^{2-}$ will be
Due to the presence of ambidentate ligands coordination compounds show isomerism. Palladium complexes of the type $\left[\mathrm{Pd}\left(\mathrm{C}_6 \mathrm{H}_5\right)_2(\mathrm{SCN})_2\right]$ and $\left[\mathrm{Pd}\left(\mathrm{C}_6 \mathrm{H}_5\right)_2(\mathrm{NCS})_2\right]$ are
The compounds $\left[\mathrm{Co}\left(\mathrm{SO}_4\right)\left(\mathrm{NH}_3\right)_5\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{SO}_4\right)\left(\mathrm{NH}_3\right)_5\right] \mathrm{Cl}$ represent
A chelating agent has two or more than two donor atoms to bind to a single metal ion. Which of the following is not a chelating agent?
Which of the following species is not expected to be a ligand?
What kind of isomerism exists between $\left[\mathrm{Cr}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right] \mathrm{Cl}_3$ (violet) and $\left[\mathrm{Cr}\left(\mathrm{H}_2 \mathrm{O}\right)_5 \mathrm{Cl}\right] \mathrm{Cl}_2 \cdot \mathrm{H}_2 \mathrm{O}$ (greyish-green)?
IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_3\right)_2 \mathrm{Cl}\left(\mathrm{NO}_2\right)\right]$ is
Match the complex ions given in Column I with the colours given in Column II and assign the correct code.
Column I (Complex ion) |
Column II (Colour) |
||
---|---|---|---|
A. | $\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_6\right]^{3+}$ | 1. | Violet |
B. | $\left[\mathrm{Ti}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{3+}$ | 2. | Green |
C. | $\left[\mathrm{Ni}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+}$ | 3. | Pale blue |
D. | $\left[\mathrm{Ni}\left(\mathrm{H}_2 \mathrm{O}\right)_4(\mathrm{en})\right]^{2+}(\mathrm{aq})$ | 4. | Yellowish orange |
Match the coordination compounds given in Column I with the central metal atoms given in Column II and assign the correct code.
Column I (Coordination compound) |
Column II (Central metal atom) |
||
---|---|---|---|
A. | Chlorophyll | 1. | Rhodium |
B. | Blood pigment | 2. | Cobalt |
C. | Wilkinson catalyst | 3. | Magnesium |
D. | Vitamin B$_{12}$ | 4. | Iron |
Match the complex ions given in Column I with the hybridisation and number of unpaired electrons given in Column II and assign the correct code.
Column I (Complex ion) |
Column II (Hybridisation, number of unpaired electrons) |
||
---|---|---|---|
A. | $\left[\mathrm{Cr}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{3+}$ | 1. | $dsp^2,1$ |
B. | $\left[\mathrm{Co}(\mathrm{CN})_4\right]^{2-}$ | 2. | $sp^3 d^2,5$ |
C. | $\left[\mathrm{Ni}\left(\mathrm{NH}_3\right)_6\right]^{2+}$ | 3. | $d^2 sp^3, 3$ |
D. | $\left[\mathrm{MnF}_6\right]^{4-}$ | 4. | $sp^3 d^2, 2$ |
Match the complex species given in Column I with the possible isomerism given in Column II and assign the correct code.
Column I (Complex species) |
Column II (Isomerism) |
||
---|---|---|---|
A. | $\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_4 \mathrm{Cl}_2\right]^{+}$ | 1. | Optical |
B. | cis $-\left[\mathrm{Co}(\mathrm{en})_2 \mathrm{Cl}_2\right]^{+}$ | 2. | Ionisation |
C. | $\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_5\left(\mathrm{NO}_2\right)\right] \mathrm{Cl}_2$ | 3. | Coordination |
D. | $\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_6\right]\left[\mathrm{Cr}(\mathrm{CN})_6\right]$ | 4. | Geometrical |
Match the compounds given in Column I with the oxidation state of cobalt present in it (given in column II) and assign the correct code.
Column I (Compound) |
Column II (Oxidation state of Co) |
||
---|---|---|---|
A. | $\left[\mathrm{Co}(\mathrm{NCS})\left(\mathrm{NH}_3\right)_5\right]\left(\mathrm{SO}_3\right)$ | 1. | +4 |
B. | $\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_4 \mathrm{Cl}_2\right] \mathrm{SO}_4$ | 2. | 0 |
C. | $\mathrm{Na}_4\left[\mathrm{Co}\left(\mathrm{S}_2 \mathrm{O}_3\right)_3\right]$ | 3. | +2 |
D. | $\left[\mathrm{CO}_2(\mathrm{CO})_8\right]$ | 4. | +3 |
Assertion (A) Toxic metal ions are removed by the chelating ligands.
Reason (R) Chelate complexes tend to be more stable.
Assertion (A) $\left[\mathrm{Cr}\left(\mathrm{H}_2 \mathrm{O}_6\right)\right] \mathrm{Cl}_2$ and $\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right] \mathrm{Cl}_2$ are reducing in nature.
Reason (R) Unpaired electrons are present in their d-orbitals.
Assertion (A) Linkage isomerism arises in coordination compounds containing ambidentate ligand.
Reason (R) Ambidentate ligand has two different donor atoms.
Assertion (A) Complexes of $M X_6$ and $M X_5 L$ type ( $X$ and $L$ are unidentate) do not show geometrical isomerism.
Reason (R) Geometrical isomerism is not shown by complexes of coordination number 6.
Assertion $(\mathrm{A})\left[\mathrm{Fe}(\mathrm{CN})_6\right]^{3-}$ ion shows magnetic moment corresponding to two unpaired electrons.
Reason (R) Because it has $d^2 s p^3$ type hybridisation.
Atomic number of Mn. Fe and Co are 25, 26 and 27 respectively. Which of the following inner orbital octahedral complex ions are diamagnetic?
Atomic number of $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$ and Ni are $25,26,27$ and 28 respectively. Which of the following outer orbital octahedral complexes have same number of unpaired electrons?
Which of the following options are correct for $\left[\mathrm{Fe}(\mathrm{CN})_6\right]^{3-}$ complex?
An aqueous pink solution of cobalt(II) chloride changes to deep blue on addition of excess of HCl . This is because .............. .
Which of the following complexes are homoleptic?
Which of the following complexes are heteroleptic?
Identify the optically active compounds from the following
Identify the correct statements for the behaviour of ethane-1, 2diamine as a ligand.
Which of the following complexes show linkage isomerism?
Arrange the following complexes in the increasing order of conductivity of their solution
$$\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_3 \mathrm{Cl}_3\right],\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_4 \mathrm{Cl}_2\right] \mathrm{Cl},\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_6\right] \mathrm{Cl}_3,\left[\mathrm{Cr}\left(\mathrm{NH}_3\right)_5 \mathrm{Cl}\right] \mathrm{Cl}_2$$
A coordination compound $\mathrm{Cr}\mathrm{~Cl}_3 \cdot 4 \mathrm{H}_2 0$ precipitates silver chloride when treated with silver nitrate. The molar conductance of its solution corresponds to a total of two ions. Write structural formula of the compound and name it.
A complex of the type $\left[M(A A)_2 X_2\right]^{n+}$ is known to be optically active. What does this indicate about the structure of the complex? Give one example of such complex.
Magnetic moment of $\left[\mathrm{MnCl}_4\right]^{2-}$ is 5.92 BM . Explain giving reason present.
On the basis of crystal field theory explain why Co(III) forms paramagnetic octahedral complex with weak field ligands whereas it forms diamagnetic octahedral complex with strong field ligands.
Why are low spin tetrahedral complexes not formed?
Give the electronic configuration of the following complexes on the basis of crystal field splitting theory. $\left[\mathrm{CoF}_6\right]^{3-},\left[\mathrm{Fe}(\mathrm{CN})_6\right]^{4-}$ and $\left[\mathrm{Cu}\left(\mathrm{NH}_3\right)_6\right]^{2+}$.
Explain why $\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{3+}$ has magnetic moment value of 5.92 BM whereas $\left[\mathrm{Fe}(\mathrm{CN})_6\right]^{3-}$ has a value of only 1.74 BM ?
Arrange following complex ions in increasing order of crystal field splitting energy $\left(\Delta_0\right)$.
$$\left[\mathrm{Cr}(\mathrm{Cl})_6\right]^{3-},\left[\mathrm{Cr}(\mathrm{CN})_6\right]^{3-},\left[\mathrm{Cr}\left(\mathrm{NH}_3\right)_6\right]^{3+} .$$
Why do compounds having similar geometry have different magnetic moment?
$\mathrm{CuSO}_4 \cdot 5 \mathrm{H}_2 \mathrm{O}$ is blue in colour while $\mathrm{CuSO}_4$ is colourless. Why?
Name the type of isomerism when ambidentate ligands are attached to central metal ion. Give two examples of ambidentate ligands.
Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following
(a) $\left[\mathrm{CoF}_6\right]^{3-},\left[\mathrm{Co}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+},\left[\mathrm{Co}(\mathrm{CN})_6\right]^{3-}$
(b) $\mathrm{FeF}_6{ }^{3-},\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+},\left[\mathrm{Fe}(\mathrm{CN})_6\right]^{4-}$
Using valence bond theory, explain the following in relation to the complexes given below
$$\left[\mathrm{Mn}(\mathrm{CN})_6\right]^{3-},\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_6\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{3+},\left[\mathrm{FeCl}_6\right]^{4-}$$
(a) Type of hybridisation
(b) Inner or outer orbital complex
(c) Magnetic behaviour
(d) Spin only magnetic moment value.
$\mathrm{CoSO}_4 \mathrm{Cl} \cdot 5 \mathrm{NH}_3$ exists in two isomeric forms ' A ' and ' B '. Isomer ' A ' reacts with $\mathrm{AgNO}_3$ to give white precipitate, but does not react with $\mathrm{BaCl}_2$. Isomer ' B ' gives white precipitate with $\mathrm{BaCl}_2$ but does not react with $\mathrm{AgNO}_3$. Answer the following questions.
(a) Identify ' $A$ ' and ' $B$ ' and write their structural formulae.
(b) Name the type of isomerism involved.
(c) Give the IUPAC name of ' $A$ ' and ' $B$ '.
What is the relationship between observed colour of the complex and the wavelength of light absorbed by the complex?
Why are different colours observed in octahedral and tetrahedral complexes for the same metal and same ligands?