Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following
(a) $\left[\mathrm{CoF}_6\right]^{3-},\left[\mathrm{Co}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+},\left[\mathrm{Co}(\mathrm{CN})_6\right]^{3-}$
(b) $\mathrm{FeF}_6{ }^{3-},\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+},\left[\mathrm{Fe}(\mathrm{CN})_6\right]^{4-}$
(a) $\left[\mathrm{CoF}_6\right]^{3-}$.
$\mathrm{F}^{-}$is a weak field ligand.
Configuration of $\mathrm{Co}^{3+}=3 d^6$ (or $t_{2 g}^4 e_g^2$)
Number of unpaired electrons $(n)=4$
Magnetic moment $(\mu)=\sqrt{n(n+2)}=\sqrt{4(4+2)}=\sqrt{24}=4.9 \mathrm{BM}$
$\left[\mathrm{Co}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+}$, $\mathrm{H}_2 \mathrm{O}$ is a weak field ligand.
Configuration of $\mathrm{Co}^{2+}=3 d^7\left(\right.$ or $\left.t_{2 g}^5 e_g^2\right)$
Number of unpaired electrons $(n)=3$
$$\mu=\sqrt{3(3+2)}=\sqrt{15}=3.87 \mathrm{BM}$$
$\left[\mathrm{Co}(\mathrm{CN})_6\right]^{3-}$ i.e., $\mathrm{Co}^{3+}$
$\because \quad \mathrm{CN}$ is strong field ligand.
$$\mathrm{Co}^{3+}=3 \mathrm{~d}^6\left(\mathrm{or} t_{2 g}^6 \mathrm{e}_g^0\right)$$
There is no unpaired electron, so it is diamagnetic.
$$\mu=0$$
(b) $\left[\mathrm{FeF}_6\right]^{3-}$,
$\mathrm{Fe}^{3+}=3 d^5\left(\right.$ or $\left.t_{2 g}^3 e_g^2\right)$
Number of unpaired electrons, $n=5$
$$\begin{aligned} \mu & =\sqrt{5(5+2)} \\ & =\sqrt{35}=5.92 \mathrm{BM} \\ {\left[\mathrm{Fe}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{2+} } & \end{aligned}$$
$$\mathrm{Fe}^{2+}=3 d^6\left(\operatorname{or} t_{2 g}^4 e_g^2\right)$$
Number of unpaired electrons, $n=4$
$$\begin{aligned} \mu & =\sqrt{4(4+2)} \\ Z & =\sqrt{24} \\ & =4.98 \mathrm{BM} \\ {\left[\mathrm{Fe}(\mathrm{CN})_6\right]^{4-} } & \end{aligned}$$
Since, $\mathrm{CN}^{-}$is a strong field ligand, all the electrons get paired.
$$\mathrm{Fe}^{2+}=3 d^6\left(\operatorname{or} t_{2 g}^6 e_g^0\right)$$
Because there is no unpaired electron, so it is diamagnetic in nature.
Using valence bond theory, explain the following in relation to the complexes given below
$$\left[\mathrm{Mn}(\mathrm{CN})_6\right]^{3-},\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_6\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{3+},\left[\mathrm{FeCl}_6\right]^{4-}$$
(a) Type of hybridisation
(b) Inner or outer orbital complex
(c) Magnetic behaviour
(d) Spin only magnetic moment value.
(a) $\left[\mathrm{Mn}(\mathrm{CN})_6\right]^{3-}$
(i) $d^2 s p^3$ hybridisation
(ii) Inner orbital complex because $(n-1) d$-orbitals are used.
(iii) Paramagnetic, as two unpaired electrons are present.
(iv) Spin only magnetic moment $(\mu)=\sqrt{2(2+2)}=\sqrt{8}=2.82 \mathrm{BM}$
$$\begin{aligned} & \text{(b) }\quad{\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_6\right]^{3+}} \\ & \mathrm{Co}^{3+}=3 d^6 4 s^0 \end{aligned}$$
( $\mathrm{NH}_3$ pair up the unpaired $3 d$ electrons.)
(i) $d^2 s p^3$ hybridisation
(ii) Inner orbital complex because of the involvement of $(n-1) d$-orbital in bonding.
(iii) Diamagnetic, as no unpaired electron is present.
(iv) $\mu=\sqrt{n(n+2)}=\sqrt{0(0+2)}=0$ (Zero)
(c) $\left[\mathrm{Cr}\left(\mathrm{H}_2 \mathrm{O}\right)_6\right]^{3+}$
(i) $d^2 s p^3$ hybridisation
(ii) Inner orbital complex (as $(n-1) d$-orbital take part.)
(iii) Paramagnetic (as three unpaired electrons are present.)
(iv) $\mu=\sqrt{n(n+2)}=\sqrt{3(3+2)}=\sqrt{15}=3.87 \mathrm{BM}$
$\begin{aligned} & \text { (d) }\left[\mathrm{Fe}(\mathrm{Cl})_6\right]^{4-} \\ & \mathrm{Fe}^{2+}=3 d^6\end{aligned}$
(i) $s p^3 d^2$ hybridisation
(ii) Outer orbital complex because $n d$-orbitals are involved in hybridisation.
(iii) Paramagnetic (because of the presence of four unpaired electrons).
(iv) $\mu=\sqrt{n(n+2)}=\sqrt{4(4+2)}=\sqrt{24}=4.9 \mathrm{BM}$
$\mathrm{CoSO}_4 \mathrm{Cl} \cdot 5 \mathrm{NH}_3$ exists in two isomeric forms ' A ' and ' B '. Isomer ' A ' reacts with $\mathrm{AgNO}_3$ to give white precipitate, but does not react with $\mathrm{BaCl}_2$. Isomer ' B ' gives white precipitate with $\mathrm{BaCl}_2$ but does not react with $\mathrm{AgNO}_3$. Answer the following questions.
(a) Identify ' $A$ ' and ' $B$ ' and write their structural formulae.
(b) Name the type of isomerism involved.
(c) Give the IUPAC name of ' $A$ ' and ' $B$ '.
' $A$ ' gives precipitate with $\mathrm{AgNO}_3$, so in it Cl is present outside the coordination sphere. ' $B$ ' gives precipitate with $\mathrm{BaCl}_2$, so in it $\mathrm{SO}_4^{2-}$ is present outside the coordination sphere.
(a) $\mathrm{So}, \mathrm{A}-\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_5 \mathrm{SO}_4\right] \mathrm{Cl}$
$B-\left[\mathrm{Co}\left(\mathrm{NH}_3\right)_5 \mathrm{Cl}\right] \mathrm{SO}_4$
(b) Ionisation isomerism (as give different ions when subjected to ionisation.)
(c) $[A]$, Pentaamminesulphatocobalt (III) chloride.
[B], Pentaamminechloridocobalt (III) sulphate.
What is the relationship between observed colour of the complex and the wavelength of light absorbed by the complex?
When white light falls on the complex, some part of it is absorbed. Higher the crystal field splitting energy, lower will be the wavelength absorbed by the complex. The observed colour of complex is the colour generated from the wavelength left over. e.g., if green light is absorbed, the complex appears red.
In terms of crystal field theory, suppose there is an octahedral complex with empty $e_g$ level and unpaired electrons in the $t_{2 g}$ level in ground level. If the unpaired electron absorbs light corresponding is blue-green region, it will excite to $e_g$ level and the complex will appear violet in colour.
In absence of ligand, crystal field splitting does not occur and the substance is colourless. e.g., anhydrous $\mathrm{CuSO}_4$ is while, but $\mathrm{CuSO}_4 \cdot 5 \mathrm{H}_2 \mathrm{O}$ is blue in colour.
Why are different colours observed in octahedral and tetrahedral complexes for the same metal and same ligands?
Extent of splitting of $d$-orbitals is different in octahedral and tetrahedral field. CFSE in octahedral and tetra federal field are closely related as.
$$\Delta_t=\left(\frac{4}{9}\right) \Delta_o$$
where, $\quad \Delta_t=$ crystal field splitting energy in tetrahedral field
$\Delta_0=$ crystal field splitting energy in octahedral field
Wavelength of light and CFSE are related to each other by formula
$$\begin{aligned} \Delta_0=E & =\frac{h c}{\lambda} \\ E & \propto \frac{1}{\lambda} \end{aligned}$$
So, higher wavelength of light is absorbed in octahedral complexes than tetrahedral complexes for same metal and ligands. Thus, different colours are observed.