ExamGOAL
Books
19
Subjective

The weights of coffee in 70 jars is shown in the following table

Weight (in g) Frequency
200-201 13
201-202 27
202-203 18
203-204 10
204-205 1
205-206 1

Determine variance and standard deviation of the above distribution.

Explanation

$Cl$ $f_i$ $x_i$ $d_i=x_i-\bar{x}$ $f_i d_i$ $f_i d_i^2$
200-201 13 200.5 $-2$ $-26$ 52
201-202 27 201.5 $-1$ $-27$ 27
202-203 18 202.5 0 0 0
203-204 10 203.5 1 10 10
204-205 1 204.5 2 2 4
205-206 1 205.5 3 3 9
$\Sigma f_i=70$ $\Sigma f_i d_i=-38$ $\Sigma f_i d^2_i=102$

$$\begin{aligned} & \therefore \quad \quad \sigma^2=\frac{\Sigma f_i d_i^2}{\Sigma f_i}-\left(\frac{\Sigma f_i d_i}{\Sigma f_i}\right)^2=\frac{102}{70}-\left(\frac{-38}{70}\right)^2 \\ & \text { Now, } \\ & =1.4571-0.2916=1.1655 \\ & \sigma=\sqrt{1.1655}=1.08 \mathrm{~g} \end{aligned}$$

20
Subjective

Determine mean and standard deviation of first n terms of an AP whose first term is a and common difference is d.

Explanation

$x_i$ $x_i-a$ $(x_i-a)^2$
$a$ 0 0
$a+d$ $d$ $d^2$
$a+2d$ $2d$ $4d^2$
... ... $9d^2$
... ... ...
... ... ...
$a+(n-1)d$
$\Sigma x_i=\frac{n}{2}[2a+(n-1)]$
$(n-1)d$ $(n-1)^2 d^2$

$$\begin{aligned} \because \quad \text { Mean } & =\frac{\Sigma x_i}{n}=\frac{1}{n}\left[\frac{n}{2}(2 a+(n-1) d]\right. \\ & =a+\frac{(n-1)}{2} d \end{aligned}$$

$$\begin{aligned} & \therefore \quad \Sigma\left(x_i-a\right)=d[1+2+3+\ldots+(n-1) d] \\ & =d \frac{(n-1) n}{2} \\ & \text { and } \\ & \Sigma\left(x_i-a\right)^2=d^2\left[1^2+2^2+3^2+\ldots+(n-1)^2\right] \\ & =\frac{d^2(n-1) n(2 n-1)}{6} \\ & \sigma=\sqrt{\frac{\left(x_i-\mathrm{a}\right)^2}{n}-\left(\frac{x_i-\mathrm{a}}{n}\right)^2} \\ & =\sqrt{\frac{d^2(n-1)(n)(2 n-1)}{6 n}-\left[\frac{d(n-1) n}{2 n}\right]^2} \\ & =\sqrt{\frac{d^2(n-1)(2 n-1)}{6}-\frac{d^2(n-1)^2}{4}} \\ & =d \sqrt{\frac{(n-1)(2 n-1)}{6}-\frac{(n-1)^2}{4}} \\ & =d \sqrt{\frac{(n-1)}{2}\left(\frac{2 n-1}{3}-\frac{n-1}{2}\right)} \\ & =d \sqrt{\frac{(n-1)}{2}\left[\frac{4 n-2-3 n+3}{6}\right]} \\ & =d \sqrt{\frac{(n-1)(n+1)}{12}}=d \sqrt{\frac{\left(n^2-1\right)}{12}} \end{aligned}$$

21
Subjective

Following are the marks obtained, out of 100, by two students Ravi and Hashina in 10 tests.

Ravi 25 50 45 30 70 42 36 48 35 60
Hashina 10 70 50 20 95 55 42 60 48 80

Who is more intelligent and who is more consistent?

Explanation

For Ravi,

$x_i$ $d_i=x_i-45$ $d_i^2$
25 $-20$ 400
50 5 25
45 0 0
30 $-15$ 225
70 25 625
42 $-3$ 9
36 $-9$ 81
48 3 9
35 $-10$ 100
60 15 225
Total $\Sigma d_i=-14$ $\Sigma d^2_i=1699$

$$\begin{aligned} \sigma & =\sqrt{\frac{\Sigma d^2 i}{n}-\left(\frac{\Sigma d_i}{n}\right)^2} \\ & =\sqrt{\frac{1699}{10}-\left(\frac{-14}{10}\right)^2}=\sqrt{169.9-0.0196} \\ & =\sqrt{169.88}=13.03 \\ \text{Now,}\quad \bar{x} & =A+\frac{\Sigma d_i}{\Sigma f_i}=45-\frac{14}{10}=43.6 \end{aligned}$$

For Hashina,

$x_i$ $d_i=x_i-55$ $d_i^2$
10 $-45$ 2025
70 25 625
50 $-5$ 25
20 $-35$ 1225
95 40 1600
55 0 0
42 $-13$ 169
60 5 25
48 $-7$ 49
80 25 625
Total $\Sigma d_i=0$ $\Sigma d^2_i=6368$

$$\begin{aligned} &\begin{array}{ll} \because & \text { Mean }=55 \\ \therefore & \sigma=\sqrt{\frac{6368}{10}}=\sqrt{636.8}=25.2 \\ \text { For Ravi, } & C V=\frac{\sigma}{\bar{x}} \times 100=\frac{13.03}{43.6} \times 100=29.88 \\ \text { For Hashina, } & C V=\frac{\sigma}{\bar{x}} \times 100=\frac{25.2}{55} \times 100=45.89 \end{array}\\ &\text { Hence, Hashina is more consistent and intelligent. } \end{aligned}$$

22
Subjective

Mean and standard deviation of 100 observations were found to be 40 and 10 , respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, then find the correct standard deviation.

Explanation

$$\begin{aligned} &\begin{aligned} \text { Given, }\quad n=100, \bar{x}=40, \sigma & =10 \text { and } \bar{x}=40 \\ \therefore\quad \frac{\Sigma x_i}{n} & =40 \\ \Rightarrow\quad \frac{\Sigma x_i}{100} & =40 \\ \Rightarrow\quad\Sigma x_i & =4000 \\ \text { Corrected } \Sigma x_i & =4000-30-70+3+27 \\ \therefore\quad & =4030-100=3930 \\ \text { Corrected mean } & =\frac{2930}{100}=39.3 \end{aligned} \end{aligned}$$

$$\begin{aligned} \text{Now,}\quad & \sigma^2=\frac{\Sigma x_i^2}{n}-(40)^2 \\ \Rightarrow\quad & 100=\frac{\Sigma x_i^2}{100}-1600 \\ \Rightarrow\quad & \Sigma x_i^2=170000 \\ & \text { Now, } \quad \text { Corrected } \Sigma x_i^2=170000-(30)^2-(70)^2+3^2+(27)^2 \\ & =164939 \\ & \text { Corrected } \sigma=\sqrt{\frac{164939}{100}-(39.3)^2} \\ & =\sqrt{1649.39-39.3 \times 39.3} \\ & =\sqrt{1649.39-1544.49} \\ & =\sqrt{104.9}=10.24 \end{aligned}$$

23
Subjective

3 While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25 . He obtained the mean and variance as 45 and 16, respectively. Find the correct mean and the variance.

Explanation

$$\begin{aligned} & \text { Given, } \quad n=10, \bar{x}=45 \text { and } \sigma^2=16 \\ & \therefore \quad \bar{x}=45 \Rightarrow \frac{\Sigma x_i}{n}=45 \\ & \Rightarrow \quad \frac{\Sigma x_i}{10}=45 \Rightarrow \Sigma x_i=450 \\ & \text { Corrected } \Sigma x_i=450-52+25=423 \\ \therefore\quad & \bar{x}=\frac{423}{10}=42.3 \\ & \sigma^2=\frac{\Sigma x_i^2}{n}-\left(\frac{\Sigma x_i}{n}\right)^2 \\ & 16=\frac{\Sigma x_i^2}{10}-(45)^2 \\ & \Sigma x_i^2=10(2025+16) \\ & \Sigma x_i^2=20410 \\ & \therefore \quad \text { Corrected } \Sigma x_i^2=20410-(52)^2+(25)^2=18331 \\ & \text { and } \quad \text { corrected } \sigma^2=\frac{18331}{10}-(42.3)^2=43.81 \end{aligned} $$