ExamGOAL
Books
51

For all sets $A$ and $B, A-(A \cap B)$ is equal to .......... .

Explanation

$A-(A \cap B)=A-B=A \cap B^{\prime}$

52

Match the following sets for all sets $A, B$ and $C$

Column I Column II
(i) $\left(\left(A^{\prime} \cup B^{\prime}\right)-A\right)^{\prime}$ (a) $A-B$
(ii) $\left[\left(B^{\prime} \cup\left(B^{\prime}-A\right)\right]^{\prime}\right.$ (b) $A$
(iii) $(A-B)-(B-C)$ (c) $B$
(iv) $(A-B) \cap(C-B)$ (d) $(A \times B) \cap(A \times C)$
(v) $A \times(B \cap C)$ (e) $(A \times B) \cup(A \times C)$
(vi) $A \times(B \cup C)$ (f) $(A \cap C)-B$

Explanation

(i) $\left[\left(A^{\prime} \cup B^{\prime}\right)-A\right]^{\prime}=\left[\left(A^{\prime} \cup B^{\prime}\right) \cap A^{\prime}\right]^{\prime} \quad\left[\because A-B=A \cap B^{\prime}\right]$

$=\left[(A \cap B)^{\prime} \cap A^{\prime}\right]^{\prime} \quad\left[\because(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}\right]$

$=\left[(A \cap B)^{\prime}\right]^{\prime} \cup\left(A^{\prime}\right)^{\prime}=(A \cap B) \cup A \quad\left[\because\left(A^{\prime}\right)^{\prime}=A\right]$

$=A$

(ii) $\left[B^{\prime} \cup\left(B^{\prime}-A\right)\right]^{\prime}=\left[B^{\prime} \cup\left(B^{\prime} \cap A^{\prime}\right)\right]^{\prime} \quad\left[\because A-B=A \cap B^{\prime}\right]$

$=\left[B^{\prime} \cup(B \cup A)^{\prime}\right]^{\prime} \quad\left[\because A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}\right]$

$=\left(B^{\prime}\right)^{\prime} \cap\left[(B \cup A)^{\prime}\right]^{\prime} \quad\left[\because(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}\right]$

$=B \cap(B \cup A) \quad\left[\because\left(A^{\prime}\right)^{\prime}=A\right]$

$=B$

(iii) $(A-B)-(B-C)=\left(A \cap B^{\prime}\right)-\left(B \cap C^{\prime}\right) \quad\left[\because A-B=A \cap B^{\prime}\right]$

$$\begin{aligned} & =\left(A \cap B^{\prime}\right) \cap\left(B \cap C^{\prime}\right)^{\prime} \\ & =\left(A \cap B^{\prime}\right) \cap\left[B^{\prime} \cup\left(C^{\prime}\right)^{\prime}\right] \\ & =\left(A \cap B^{\prime}\right) \cap\left(B^{\prime} \cup C\right)\quad \left[\because\left(A^{\prime}\right)^{\prime}=A\right] \\ & =\left[A \cap\left(B^{\prime} \cup C\right)\right] \cap\left[B^{\prime} \cap\left(B^{\prime} \cup C\right)\right] \\ & =\left[A \cap\left(B^{\prime} \cup C\right)\right] \cap B^{\prime} \\ & =\left(A \cap B^{\prime}\right) \cap\left[\left(B^{\prime} \cup C\right) \cap B^{\prime}\right] \\ & =\left(A \cap B^{\prime}\right) \cap B^{\prime}=A \cap B^{\prime}=A-B \end{aligned}$$

Alternate Method

It is clear from the diagram, $(A-B)-(B-C)=A-B$.

$\begin{array}{lll}\text{(iv)}\quad (A-B) \cap(C-B) & & \\ \Rightarrow & \left(A \cap B^{\prime}\right) \cap\left(C \cap B^{\prime}\right) & {\left[\because A-B=A \cap B^{\prime}\right]} \\ \Rightarrow & (A \cap C) \cap B^{\prime} & \\ \Rightarrow & (A \cap C)-B & {\left[\because A \cap B^{\prime}=A-B\right]}\end{array}$

(v) $A \times B \cap C=(A \times B) \cap(A \times C)$

(vi) $A \times(B \cup C)=(A \times B) \cup(A \times C)$

Hence, the correct matches are

(i) $\leftrightarrow$ (b),

(ii) $\leftrightarrow$ (c),

(iii) $\leftrightarrow$ (a),

(iv) $\leftrightarrow(f)$,

$(\mathrm{v}) \leftrightarrow$ (d),

$(\mathrm{vi}) \leftrightarrow(\mathrm{e})$

53

If $A$ is any set, then $A \subset A$.

A
TRUE
B
FALSE
54

If $M=\{1,2,3,4,5,6,7,8,9\}$ and $B=\{1,2,3,4,5,6,7,8,9\}$, then $B \not \subset M$.

A
TRUE
B
FALSE
55

The sets $\{1,2,3,4\}$ and $\{3,4,5,6\}$ are equal

A
TRUE
B
FALSE