ExamGOAL
Books
6
Subjective

If $A$ and $B$ are subsets of the universal set $U$, then show that

(i) $A \subset A \cup B$

(ii) $A \subset B \Leftrightarrow A \cup B=B$

(iii) $(A \cap B) \subset A$

Explanation

$$\begin{array}{ll} \text {(i) Let } & x \in A \\ \Rightarrow & x \in A \text { or } x \in B \Rightarrow x \in A \cup B \\ \text { Hence, } & \subset A \cup B \end{array}$$

$$\begin{aligned} &\text { (ii) If }\\ &\begin{array}{lr} & A \subset B \\ \text { Let } & x \in A \cup B \end{array} \end{aligned}$$

$$\begin{aligned} &\begin{array}{lcr} \Rightarrow & x \in A \text { or } x \in B \Rightarrow x \in B & {[\because A \subset B]} \\ \Rightarrow & A \cup B \subset B & \ldots \text { (i) } \\ \text { But } & B \subset A \cup B & \ldots \text { (ii) } \end{array}\\ \end{aligned}$$

From Eqs. (i) and (ii),

$\begin{aligned} & A \cup B=B \\ & \text{If}\quad A \cup B=B\end{aligned}$

Let $y \in A$

$\Rightarrow \quad y \in A \cup B \Rightarrow y \in B \quad[\because A \cup B=B]$

$\begin{array}{ll}\Rightarrow & A \subset B \\ \text { Hence, } & A \subset B \quad \Leftrightarrow \quad A \cup B=B\end{array}$

(iii) Let $$x \in A \cap B$$

$\Rightarrow \quad x \in A$ and $x \in B \quad \Rightarrow \quad x \in A$

Hence, $$A \cap B \subset A$$

7
Subjective

Given that $N=\{1,2,3, \ldots, 100\}$. Then, write

(i) the subset of $N$ whose elements are even numbers.

(ii) the subset of $N$ whose elements are perfect square numbers.

Explanation

We have, $\quad N=\{1,2,3,4, \ldots ., 100\}$

(i) Required subset $=\{2,4,6,8, \ldots, 100\}$

(ii) Required subset $=\{1,4,9,16,25,36,49,64,81,100\}$

8
Subjective

If $X=\{1,2,3\}$, if $n$ represents any member of $X$, write the following sets containing all numbers represented by

(i) $4 n$

(ii) $n+6$

(iii) $\frac{n}{2}$

(iv) $n-1$

Explanation

Given, $$X=\{1,2,3\}$$

(i) $\{4 n \mid n \in X\}=\{4,8,12\}$

(ii) $\{n+6 \mid n \in X\}=\{7,8,9\}$

(iii) $\left\{\left.\frac{n}{2} \right\rvert\, n \in x\right\}=\left\{\frac{1}{2}, 1, \frac{3}{2}\right\}$

(iv) $\{n-1 \mid n \in X\}=\{0,1,2\}$

9
Subjective

If $Y=\{1,2,3, \ldots, 10\}$ and $a$ represents any element of $Y$, write the following sets, containing all the elements satisfying the given conditions.

(i) $a \in Y$ but $a^2 \notin Y$

(ii) $a+1=6, a \in Y$

(iii) $a$ is less than 6 and $a \in Y$

Explanation

Given, $$Y=\{1,2,3, \ldots, 10\}$$

(i) $\left\{a: a \in Y\right.$ and $\left.a^2 \notin Y\right\}=\{4,5,6,7,8,9,10\}$

(ii) $\{a: a+1=6, a \in Y\}=\{5\}$

(iii) is less than 6 and $a \in Y\}=\{1,2,3,4,5$, $\}$

10
Subjective

$A, B$ and $C$ are subsets of universal set $U$. If $A=\{2,4,6,8,12,20\}$, $B=\{3,6,9,12,15\}, C=\{5,10,15,20\}$ and $U$ is the set of all whole numbers, draw a Venn diagram showing the relation of $U, A, B$ and $C$.

Explanation