Let $T=\left\{x \left\lvert\, \frac{x+5}{x-7}-5=\frac{4 x-40}{13-x}\right.\right\}$. Is $T$ an empty set? Justify your answer.
Since, $$T=\left\{x \left\lvert\, \frac{x+5}{x-7}-5=\frac{4 x-40}{13-x}\right.\right\}$$
$\begin{array}{ll}\because & \frac{x+5}{x-7}-5=\frac{4 x-40}{13-x} \\ \Rightarrow & \frac{x+5-5(x-7)}{x-7}=\frac{4 x-40}{13-x} \\ \Rightarrow & \frac{x+5-5 x+35}{x-7}=\frac{4 x-40}{13-x} \\ \Rightarrow & \frac{-4 x+40}{x-7}=\frac{4 x-40}{13-x} \\ \Rightarrow & -(4 x-40)(13-x)=(4 x-40)(x-7)\end{array}$
$\Rightarrow \quad(4 x-40)(x-7)+(4 x-40)(13-x)=0$
$$\begin{array}{rlr} \Rightarrow & (4 x-40)(x-7+13-x) =0 \\ \Rightarrow & 4(x-10) 6 =0 \\ \Rightarrow & 24(x-10) =0 \\ \Rightarrow & x =10 \\ \therefore & T =\{10\} \end{array}$$
Hence, T is not an empty set.
If $A, B$ and $C$ be sets. Then, show that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
$$\begin{array}{ll} \text { Let } & x \in A \cap(B \cup C) \\ \Rightarrow & x \in A \text { and } x \in(B \cup C) \\ \Rightarrow & x \in A \text { and }(x \in B \text { or } x \in C) \\ \Rightarrow & (x \in A \text { and } x \in B) \text { or }(x \in A \text { and } x \in C) \\ \Rightarrow & x \in A \cap B \text { or } x \in A \cap C \\ & x \in(A \cap B) \cup(A \cap C) \\ \Rightarrow & A \cap(B \cup C) \subset(A \cap B) \cup(A \cap C)\quad \text{... (i)} \end{array}$$
$\begin{array}{ll}\text { Again, let } & y \in(A \cap B) \cup(A \cap C) \\ \Rightarrow & y \in(A \cap B) \text { or } y \in(A \cap C) \\ \Rightarrow & (y \in A \text { and } y \in B) \text { or }(y \in A \text { and } y \in C) \\ \Rightarrow & y \in A \text { and }(y \in B \text { or } y \in C) \\ \Rightarrow & y \in A \text { and } y \in B \cup C \\ \Rightarrow & y \in A \cap(B \cup C) \\ \Rightarrow & (A \cap B) \cup(A \cap C) \subset A \cap(B \cup C)\quad \text{.... (ii)}\end{array}$
From Eqs.(i) and( ii),
$$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$$
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science, 4 in English and Science, 4 in all the three. Find how many passed
(i) in English and Mathematics but not in Science.
(ii) in Mathematics and Science but not in English.
(iii) in Mathematics only.
(iv) in more than one subject only.
Let $M$ be the set of students who passed in Mathematics, $E$ be the set of students who passed in English and $S$ be the set of students who passed in Science.
Then,
$$\begin{aligned} n(u) & =100 \\ n(E)=15, n(M) & =12, n(S)=8, n(E \cap M)=6, n(M \cap S)=7, \\ n(E \cap S) & =4, \text { and } n(E \cap M \cap S)=4 \\ \because \quad n(E) & =15 \end{aligned}$$
$$\begin{array}{lr} \Rightarrow & a+b+e+f=15 \quad \text{.... (i)}\\ \text { and } & n(M)=12 \\ \Rightarrow & b+c+e+d=12 \quad \text{.... (ii)} \end{array}$$
Also, $$n(S)=8$$
$\Rightarrow \quad d+e+f+g=8$ ... (iii)
$n(E \cap M)=6$
$\Rightarrow \quad b+e=6$ .... (iv)
$n(M \cap S)=7$
$\Rightarrow \quad e+d=7$ .... (v)
$n(E \cap S)=4$
$\Rightarrow \quad e+f=4$ .... (vi)
$n(E \cap M \cap S)=4$
$\Rightarrow \quad e=4$ .... (vii)
From Eqs. (vi) and (vii), $$f=0$$
From Eqs. (v) and (vii), $d=3$
From Eqs. (iv) and (vii), $b=2$
On substituting the values of $d, e$ and $f$ in Eq. (iii), we get
$$\begin{aligned} 3+4+0+g & =8 \\ g & =1 \end{aligned}$$
On substituting the value of $b, e$ and $d$ in Eq. (ii), we get
$$\begin{array}{rlrl} & & 2+c+4+3 & =12 \\ \Rightarrow & c & =3 \end{array}$$
On substituting b, $e$, and $f$ in Eq. (i), we get
$$\begin{aligned} a+2+4+0 & =15 \\ a & =9 \end{aligned}$$
Alternate Method Let $E$ denotes the set of student who passed in English. $M$ denotes the set of students who passed in Mathematics. $S$ denotes the set of students who passed in Science.
Now,
$$\begin{aligned} n(U) & =100, n(E)=15, n(m)=12, n(S)=8 \\ n(E \cap M) & =6, n(M \cap S)=7 \\ n(E \cap S) & =4, n(E \cap M \cap S)=4 \end{aligned}$$
(i) Number of students passed in English and Mathematics but not in Science i.e.,
$$\begin{aligned} n\left(E \cap M \cap S^{\prime}\right) & =n(E \cap M)-n(E \cap M \cap S) \quad \left[\because A \cap B^{\prime}=A-(A \cap B)\right] \\ & =6-4=2 \end{aligned}$$
(ii) Number of students passed in Mathematics and Science but not in English.
$$\begin{aligned} \text { i.e., } \quad n\left(M \cap S \cap E^{\prime}\right) & =n(M \cap S)-n(M \cap S \cap E) \\ & =7-4=3 \end{aligned}$$
(iii) Number of students passed in mathematics only
$$\begin{aligned} \text { i.e., } \quad n\left(M \cap S^{\prime} \cap E^{\prime}\right) & =n(M)-n(M \cap S)-n(M \cap E)+n(M \cap S \cap E) \\ & =12-7-6+4=3 \end{aligned}$$
(iv) Number of students passed in more than one subject only
$$\begin{aligned} \text { i.e., } \quad n(E \cap M)+n(M & \cap S)+n(E \cap S)-3 n(E \cap M \cap S)+n(E \cap M \cap S) \\ & =6+7+4-4 \times 3+4 \\ & =17-12+4=5+4=9 \end{aligned}$$
In a class of 60 students, 25 students play cricket and 20 students play tennis and 10 students play both the games. Find the number of students who play neither.
Let $C$ be the set of students who play cricket and $T$ be the set of students who play tennis.
Then, $$n(U)=60, n(C)=25, n(T)=20, \text { and } n(C \cap T)=10$$
$$\therefore \quad n(C \cup T)=n(C)+n(T)-n(C \cap T)$$
$=25+20-10=35$
$$\begin{aligned} \therefore \text { Number of students who play neither } & =n(U)-n(C \cup T) \\ & =60-35=25 \end{aligned}$$
In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry, 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.
Let $M$ be the set of students who study Mathematics, $P$ be the set of students who study Physics and $C$ be the set of students who study Chemistry.
Then,
$$\begin{aligned} n(U) & =200, n(M)=120, n(P)=90 \\ n(C) & =70, n(M \cap P)=40, n(P \cap C)=30 \\ n(C \cap M) & =50, n\left(M^{\prime} \cap P^{\prime} \cap C^{\prime}\right)=20 \end{aligned}$$
$$\begin{aligned} & & n(U)-n(M \cup P \cup C) & =20, \\ & & n(M \cup P \cup C) & =200-20=180 \\ \because & & n(M \cup P \cup C) & =n(M)+n(P)+n(C)-n(C \cap M)+n(M \cap P \cap C) \\ \Rightarrow & & 180 & =120+90+70-40-30-50+n(M \cap P \cap C) \\ \Rightarrow & & 180 & =160+n(M \cap P \cap C) \\ \Rightarrow & & n(M \cap P \cap C) & =180-160=20 \end{aligned}$$
So, the number of students who study all the three subjects is 20.