ExamGOAL
Books
8
Subjective

In a potato race 20 potatoes are placed in a line at intervals of 4 m with the first potato 24 m from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?

Explanation

According to the given information, we have following diagram.

Distance travelled to bring first potato $=24+24=2 \times 24=48 \mathrm{~m}$

Distance travelled to bring second potato $=2(24+4)=2 \times 28=56 \mathrm{~m}$

Distance travelled to bring third potato $=2(24+4+4)=2 \times 32=64 \mathrm{~m}$

Then, the series of distances are $48,56,64, \ldots$

Here,

$$\begin{aligned} & a=48 \\ & d=56-48=8 \\ \text{and}\quad & n=20 \end{aligned}$$

To find the total distance that he run in bringing back all potatoes, we have to find the sum of 20 terms of the above series.

$$\begin{aligned} \therefore \quad S_{20} & =\frac{20}{2}[2 \times 48+19 \times 8] \quad\left[\because S_n=\frac{n}{2}\{2 a+(n-1) d\}\right] \\ & =10[96+152] \\ & =10 \times 248=2480 \mathrm{~m} \end{aligned}$$

9
Subjective

In a cricket tournament 16 school teams participated. A sum of ₹ 8000 is to be awarded among themselves as prize money. If the last placed team is awarded ₹ 275 in prize money and the award increases by the same amount for successive finishing places, how much amount will the first place team receive?

Explanation

Let the first place team got ₹ $a$.

Since, award money increases by the same amount for successive finishing places.

Therefore series is an AP.

Let the constant amount be $d$.

$$\begin{aligned} &\begin{array}{ll} \text { Here, } & l=275, n=16 \text { and } S_{16}=8000 \\ \therefore & l=a+(n-) d \\ \Rightarrow & l=a+(16-1)(-d) \end{array}\\ &\text { [we take common difference ($-$ve) because series is decreasing] } \end{aligned}$$

$$\begin{array}{ll} \Rightarrow & 275=a-15 d \quad \text{... (i)}\\ \text { and } & S_{16}=\frac{16}{2}[2 a+(n-1) \cdot(-d)] \\ \Rightarrow & 8000=8[2 a+(16-1)(-d)] \\ \Rightarrow & 8000=8[2 a-15 d] \\ \Rightarrow & 1000=2 a-15 d \quad \text{... (ii)} \end{array}$$

On subtracting Eq. (i) from Eq. (ii), we get

$$\begin{aligned} & & (2 a-15 d)-(a-15 d) & =1000-275 \\ \Rightarrow & & 2 a-15 d-a+15 d & =725 \\ \therefore & & a & =725 \end{aligned}$$

Hence, first place team receive ₹ $725$.

10
Subjective

If $a_1, a_2, a_3, \ldots, a_n$ are in AP, where $a_i>0$ for all $i$, show that $$ \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=\frac{n-1}{\sqrt{a_1}+\sqrt{a_n}}$$

Explanation

Since, $a_1, a_2, a_3, \ldots, a_n$ are in AP.

$$\Rightarrow \quad a_2-a_1=a_3-a_2=\ldots=a_n-a_{n-1}=d \quad \text { [common difference] }$$

If $a_2-a_1=d$, then $\left(\sqrt{a_2}\right)^2-\left(\sqrt{a_1}\right)^2=d$

$$\begin{array}{ll} \Rightarrow & \left(\sqrt{a_2}-\sqrt{a_1}\right)\left(\sqrt{a_2}+\sqrt{a_1}\right)=d \\ \Rightarrow & \frac{1}{\sqrt{a_1}+\sqrt{a_2}}=\frac{\sqrt{a_2}-\sqrt{a_1}}{d} \end{array}$$

$$\begin{aligned} &\text { Similarly, }\\ &\begin{aligned} & \frac{1}{\sqrt{a_2}+\sqrt{a_3}}=\frac{\sqrt{a_3}-\sqrt{a_2}}{d} \\ & \qquad ... \qquad ... \qquad ...\\ & \qquad ... \qquad ... \qquad ...\\ & \qquad ... \qquad ... \qquad ...\\ & \frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=\frac{\sqrt{a_n}-\sqrt{a_{n-1}}}{d} \end{aligned} \end{aligned}$$

On adding these terms, we get

$$\begin{aligned} & \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}} \quad \text{[using above relations]}\\ = & \frac{1}{d}\left[\sqrt{a_2}-\sqrt{a_1}+\sqrt{a_3}-\sqrt{a_2}+\ldots+\sqrt{a_n}-\sqrt{a_{n-1}}\right] \\ = & \frac{1}{d}\left[\sqrt{a_n}-\sqrt{a_1}\right] \quad \text{.... (i)} \end{aligned}$$

Again, $\quad a_n=a_1+(n-1) d \quad\left[\because T_n=a+(n-1) d\right]$

$$\begin{aligned} &\begin{array}{ll} \Rightarrow & a_n-a_1=(n-1) d \\ \Rightarrow & \left(\sqrt{a_n}\right)^2-\left(\sqrt{a_1}\right)^2=(n-1) d \\ \Rightarrow & \left(\sqrt{a_n}-\sqrt{a_1}\right)\left(\sqrt{a_n}+\sqrt{a_1}\right)=(n-1) d \Rightarrow \sqrt{a_n}-\sqrt{a_1}=\frac{(n-1) d}{\sqrt{a_n}+\sqrt{a_1}} \end{array}\\ &\text { On putting this value in Eq. (i), we get }\\ &\begin{gathered} \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}} \\ =\frac{(n-1) d}{d\left(\sqrt{a_n}+\sqrt{a_1}\right)}=\frac{n-1}{\sqrt{a_n}+\sqrt{a_1}}\quad \text{Hence proved.} \end{gathered} \end{aligned}$$

11
Subjective

Find the sum of the series

$$\left(3^3-2^3\right)+\left(5^3-4^3\right)+\left(7^3-6^3\right)+\supset \text { to (i) } n \text { terms. (ii) } 10 \text { terms. }$$

Explanation

Given series, $\left(3^3-2^3\right)+\left(5^3-4^3\right)+\left(7^3-6^3\right)+\quad \text{.... (i)}$

$$=\left(3^3+5^3+7^3+7\right)-\left(2^3+4^3+6^3+\ldots\right)$$

Let $T_n$ be the $n$th term of the series (i),

$$ \begin{aligned} \text { then }\quad T_n & =\left(n \text { thterm of } 3^3, 5^3, 7^3, \ldots\right)-\left(n \text { thterm of } 2^3, 4^3, 6^3, \ldots\right)=(2 n+1)^3-(2 n)^3 \\ & =(2 n+1-2 n)\left[(2 n+1)^2+(2 n+1) 2 n+(2 n)^2\right]\left[\because a^3-b^3=(a-b)\left(a^2+a b+b^2\right)\right] \\ & =\left[4 n^2+1+4 n+4 n^2+2 n+4 n^2\right]=\left[12 n^2+6 n\right]+1 \end{aligned}$$

(i) Let $S_n$ denote the sum of $n$ term of series (i).

Then,

$$\begin{aligned} S_n & =\Sigma T_n=\Sigma\left(12 n^2+6 n\right) \\ & =12 \Sigma n^2+6 \Sigma n+\Sigma n \\ & =12 \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{6 n(n+1)}{2}+n \\ & =2 n(n+1)(2 n+1)+3 n(n+1)+n \\ & =2 n(n+1)(2 n+1)+3 n(n+1)+n \\ & =\left(2 n^2+2 n\right)(2 n+1)+3 n^2+3 n+n \\ & =4 n^3+2 n^2+4 n^2+2 n+3 n^2+3 n+n \\ & =4 n^3+9 n^2+6 n \end{aligned}$$

(ii) Sum of 10 terms,

$$\begin{aligned} S_{10} & =4 \times(10)^3+9 \times(10)^2+6 \times 10 \\ & =4 \times 1000+9 \times 100+60 \\ & =4000+900+60=4960 \end{aligned}$$

12
Subjective

Find the rth term of an AP sum of whose first $n$ terms is $2 n+3 n^2$.

Explanation

Given that, sum of $n$ terms of an AP,

$$\begin{aligned} S_n & =2 n+3 n^2 \\ T_n & =S_n-S_{n-1} \\ & =\left(2 n+3 n^2\right)-\left[2(n-1)+3(n-1)^2\right] \\ & =\left(2 n+3 n^2\right)-\left[2 n-2+3\left(n^2+1-2 n\right)\right] \\ & =\left(2 n+3 n^2\right)-\left(2 n-2+3 n^2+3-6 n\right) \\ & =2 n+3 n^2-2 n+2-3 n^2-3+6 n \\ & =6 n-1 \\ \therefore \quad \text { rth term } T_r & =6 r-1 \end{aligned}$$