In a cricket tournament 16 school teams participated. A sum of ₹ 8000 is to be awarded among themselves as prize money. If the last placed team is awarded ₹ 275 in prize money and the award increases by the same amount for successive finishing places, how much amount will the first place team receive?
Let the first place team got ₹ $a$.
Since, award money increases by the same amount for successive finishing places.
Therefore series is an AP.
Let the constant amount be $d$.
$$\begin{aligned} &\begin{array}{ll} \text { Here, } & l=275, n=16 \text { and } S_{16}=8000 \\ \therefore & l=a+(n-) d \\ \Rightarrow & l=a+(16-1)(-d) \end{array}\\ &\text { [we take common difference ($-$ve) because series is decreasing] } \end{aligned}$$
$$\begin{array}{ll} \Rightarrow & 275=a-15 d \quad \text{... (i)}\\ \text { and } & S_{16}=\frac{16}{2}[2 a+(n-1) \cdot(-d)] \\ \Rightarrow & 8000=8[2 a+(16-1)(-d)] \\ \Rightarrow & 8000=8[2 a-15 d] \\ \Rightarrow & 1000=2 a-15 d \quad \text{... (ii)} \end{array}$$
On subtracting Eq. (i) from Eq. (ii), we get
$$\begin{aligned} & & (2 a-15 d)-(a-15 d) & =1000-275 \\ \Rightarrow & & 2 a-15 d-a+15 d & =725 \\ \therefore & & a & =725 \end{aligned}$$
Hence, first place team receive ₹ $725$.
If $a_1, a_2, a_3, \ldots, a_n$ are in AP, where $a_i>0$ for all $i$, show that $$ \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=\frac{n-1}{\sqrt{a_1}+\sqrt{a_n}}$$
Since, $a_1, a_2, a_3, \ldots, a_n$ are in AP.
$$\Rightarrow \quad a_2-a_1=a_3-a_2=\ldots=a_n-a_{n-1}=d \quad \text { [common difference] }$$
If $a_2-a_1=d$, then $\left(\sqrt{a_2}\right)^2-\left(\sqrt{a_1}\right)^2=d$
$$\begin{array}{ll} \Rightarrow & \left(\sqrt{a_2}-\sqrt{a_1}\right)\left(\sqrt{a_2}+\sqrt{a_1}\right)=d \\ \Rightarrow & \frac{1}{\sqrt{a_1}+\sqrt{a_2}}=\frac{\sqrt{a_2}-\sqrt{a_1}}{d} \end{array}$$
$$\begin{aligned} &\text { Similarly, }\\ &\begin{aligned} & \frac{1}{\sqrt{a_2}+\sqrt{a_3}}=\frac{\sqrt{a_3}-\sqrt{a_2}}{d} \\ & \qquad ... \qquad ... \qquad ...\\ & \qquad ... \qquad ... \qquad ...\\ & \qquad ... \qquad ... \qquad ...\\ & \frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=\frac{\sqrt{a_n}-\sqrt{a_{n-1}}}{d} \end{aligned} \end{aligned}$$
On adding these terms, we get
$$\begin{aligned} & \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}} \quad \text{[using above relations]}\\ = & \frac{1}{d}\left[\sqrt{a_2}-\sqrt{a_1}+\sqrt{a_3}-\sqrt{a_2}+\ldots+\sqrt{a_n}-\sqrt{a_{n-1}}\right] \\ = & \frac{1}{d}\left[\sqrt{a_n}-\sqrt{a_1}\right] \quad \text{.... (i)} \end{aligned}$$
Again, $\quad a_n=a_1+(n-1) d \quad\left[\because T_n=a+(n-1) d\right]$
$$\begin{aligned} &\begin{array}{ll} \Rightarrow & a_n-a_1=(n-1) d \\ \Rightarrow & \left(\sqrt{a_n}\right)^2-\left(\sqrt{a_1}\right)^2=(n-1) d \\ \Rightarrow & \left(\sqrt{a_n}-\sqrt{a_1}\right)\left(\sqrt{a_n}+\sqrt{a_1}\right)=(n-1) d \Rightarrow \sqrt{a_n}-\sqrt{a_1}=\frac{(n-1) d}{\sqrt{a_n}+\sqrt{a_1}} \end{array}\\ &\text { On putting this value in Eq. (i), we get }\\ &\begin{gathered} \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}} \\ =\frac{(n-1) d}{d\left(\sqrt{a_n}+\sqrt{a_1}\right)}=\frac{n-1}{\sqrt{a_n}+\sqrt{a_1}}\quad \text{Hence proved.} \end{gathered} \end{aligned}$$
Find the sum of the series
$$\left(3^3-2^3\right)+\left(5^3-4^3\right)+\left(7^3-6^3\right)+\supset \text { to (i) } n \text { terms. (ii) } 10 \text { terms. }$$
Given series, $\left(3^3-2^3\right)+\left(5^3-4^3\right)+\left(7^3-6^3\right)+\quad \text{.... (i)}$
$$=\left(3^3+5^3+7^3+7\right)-\left(2^3+4^3+6^3+\ldots\right)$$
Let $T_n$ be the $n$th term of the series (i),
$$ \begin{aligned} \text { then }\quad T_n & =\left(n \text { thterm of } 3^3, 5^3, 7^3, \ldots\right)-\left(n \text { thterm of } 2^3, 4^3, 6^3, \ldots\right)=(2 n+1)^3-(2 n)^3 \\ & =(2 n+1-2 n)\left[(2 n+1)^2+(2 n+1) 2 n+(2 n)^2\right]\left[\because a^3-b^3=(a-b)\left(a^2+a b+b^2\right)\right] \\ & =\left[4 n^2+1+4 n+4 n^2+2 n+4 n^2\right]=\left[12 n^2+6 n\right]+1 \end{aligned}$$
(i) Let $S_n$ denote the sum of $n$ term of series (i).
Then,
$$\begin{aligned} S_n & =\Sigma T_n=\Sigma\left(12 n^2+6 n\right) \\ & =12 \Sigma n^2+6 \Sigma n+\Sigma n \\ & =12 \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{6 n(n+1)}{2}+n \\ & =2 n(n+1)(2 n+1)+3 n(n+1)+n \\ & =2 n(n+1)(2 n+1)+3 n(n+1)+n \\ & =\left(2 n^2+2 n\right)(2 n+1)+3 n^2+3 n+n \\ & =4 n^3+2 n^2+4 n^2+2 n+3 n^2+3 n+n \\ & =4 n^3+9 n^2+6 n \end{aligned}$$
(ii) Sum of 10 terms,
$$\begin{aligned} S_{10} & =4 \times(10)^3+9 \times(10)^2+6 \times 10 \\ & =4 \times 1000+9 \times 100+60 \\ & =4000+900+60=4960 \end{aligned}$$
Find the rth term of an AP sum of whose first $n$ terms is $2 n+3 n^2$.
Given that, sum of $n$ terms of an AP,
$$\begin{aligned} S_n & =2 n+3 n^2 \\ T_n & =S_n-S_{n-1} \\ & =\left(2 n+3 n^2\right)-\left[2(n-1)+3(n-1)^2\right] \\ & =\left(2 n+3 n^2\right)-\left[2 n-2+3\left(n^2+1-2 n\right)\right] \\ & =\left(2 n+3 n^2\right)-\left(2 n-2+3 n^2+3-6 n\right) \\ & =2 n+3 n^2-2 n+2-3 n^2-3+6 n \\ & =6 n-1 \\ \therefore \quad \text { rth term } T_r & =6 r-1 \end{aligned}$$
If $A$ is the arithmetic mean and $G_1, G_2$ be two geometric mean between any two numbers, then prove that $2 A=\frac{G_1^2}{G_2}+\frac{G_2^2}{G_1}$.
Let the numbers be $a$ and $b$.
Then,
$$\begin{aligned} A & =\frac{a+b}{2} \\ \Rightarrow \quad 2 A & =a+b\quad \text{.... (i)} \end{aligned}$$
and $G_1, G_2$ be geometric mean between $a$ and $b$, then $a, G_1, G_2, b$ are in GP.
Let $r$ be the common ratio.
Then,
$$\begin{aligned} & b=a r^{4-1} \quad \left[\because a_n=a r^{n-1}\right] \\ \Rightarrow\quad& b=a r^3 \Rightarrow \frac{b}{a}=r^3 \\ \therefore \quad& r=\left(\frac{b}{a}\right)^{1 / 3} \end{aligned}$$
Now, $$G_1=a r=a\left(\frac{b}{a}\right)^{1 / 3} \quad\left[\because r=\left(\frac{b}{a}\right)^{1 / 3}\right]$$
and $$G_2=a r^2=a\left(\frac{b}{a}\right)^{2 / 3}$$
$$\begin{aligned} \text{RHS} & =\frac{G_1^2}{G_2}+\frac{G_2^2}{G_1}=\frac{\left[a\left(\frac{b}{a}\right)^{1 / 3}\right]^2}{a\left(\frac{b}{a}\right)^{2 / 3}}+\frac{\left[a\left(\frac{b}{a}\right)^{2 / 3}\right]^2}{a\left(\frac{b}{a}\right)^{1 / 3}} \\ & =\frac{a^2\left(\frac{b}{a}\right)^{2 / 3}}{a\left(\frac{b}{a}\right)^{2 / 3}}+\frac{a^2\left(\frac{b}{a}\right)^{4 / 3}}{a\left(\frac{b}{a}\right)^{1 / 3}} \\ & =a+a\left(\frac{b}{a}\right)=a+b=2 A \quad \text{[using Eq. (i)]}\\ & =\text { LHS } \end{aligned}$$