A side of an equilateral triangle is 20 cm long. A second equilateral triangle is inscribed in it by joining the mid-points of the sides of the first triangle. The process is continued as shown in the accompanying diagram. Find the perimeter of the sixth inscribed equilateral triangle.
Side of equilateral $\triangle A B C=20 \mathrm{~cm}$. By joining the mid-points of this triangle, we get another equilateral triangle of side equal to half of the length of side of $\triangle A B C$.
Continuing in this way, we get a set of equilateral triangles with side equal to half of the side of the previous triangle.
$$\begin{aligned} \therefore \quad \text { Perimeter of first triangle } & =20 \times 3=60 \mathrm{~cm} \\ \text { Perimeter of second triangle } & =10 \times 3=30 \mathrm{~cm} \\ \text { Perimeter of third triangle } & =5 \times 3=15 \mathrm{~cm} \end{aligned}$$
Now, the series will be $60,30,15, \ldots$
Here,
$$\begin{aligned} & a=60 \\ & r=\frac{30}{60}=\frac{1}{2} \quad\left[\because \frac{\text { second term }}{\text { first term }}=r\right] \end{aligned}$$
We have, to find perimeter of sixth inscribed triangle. It is the sixth term of the series.
$$\begin{aligned} \therefore \quad a_6 & =a r^{6-1} \quad \left[\because a_n=a r^{n-1}\right]\\ & =60 \times\left(\frac{1}{2}\right)^5=\frac{60}{32}=\frac{15}{8} \mathrm{~cm} \end{aligned}$$
In a potato race 20 potatoes are placed in a line at intervals of 4 m with the first potato 24 m from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
According to the given information, we have following diagram.
Distance travelled to bring first potato $=24+24=2 \times 24=48 \mathrm{~m}$
Distance travelled to bring second potato $=2(24+4)=2 \times 28=56 \mathrm{~m}$
Distance travelled to bring third potato $=2(24+4+4)=2 \times 32=64 \mathrm{~m}$
Then, the series of distances are $48,56,64, \ldots$
Here,
$$\begin{aligned} & a=48 \\ & d=56-48=8 \\ \text{and}\quad & n=20 \end{aligned}$$
To find the total distance that he run in bringing back all potatoes, we have to find the sum of 20 terms of the above series.
$$\begin{aligned} \therefore \quad S_{20} & =\frac{20}{2}[2 \times 48+19 \times 8] \quad\left[\because S_n=\frac{n}{2}\{2 a+(n-1) d\}\right] \\ & =10[96+152] \\ & =10 \times 248=2480 \mathrm{~m} \end{aligned}$$
In a cricket tournament 16 school teams participated. A sum of ₹ 8000 is to be awarded among themselves as prize money. If the last placed team is awarded ₹ 275 in prize money and the award increases by the same amount for successive finishing places, how much amount will the first place team receive?
Let the first place team got ₹ $a$.
Since, award money increases by the same amount for successive finishing places.
Therefore series is an AP.
Let the constant amount be $d$.
$$\begin{aligned} &\begin{array}{ll} \text { Here, } & l=275, n=16 \text { and } S_{16}=8000 \\ \therefore & l=a+(n-) d \\ \Rightarrow & l=a+(16-1)(-d) \end{array}\\ &\text { [we take common difference ($-$ve) because series is decreasing] } \end{aligned}$$
$$\begin{array}{ll} \Rightarrow & 275=a-15 d \quad \text{... (i)}\\ \text { and } & S_{16}=\frac{16}{2}[2 a+(n-1) \cdot(-d)] \\ \Rightarrow & 8000=8[2 a+(16-1)(-d)] \\ \Rightarrow & 8000=8[2 a-15 d] \\ \Rightarrow & 1000=2 a-15 d \quad \text{... (ii)} \end{array}$$
On subtracting Eq. (i) from Eq. (ii), we get
$$\begin{aligned} & & (2 a-15 d)-(a-15 d) & =1000-275 \\ \Rightarrow & & 2 a-15 d-a+15 d & =725 \\ \therefore & & a & =725 \end{aligned}$$
Hence, first place team receive ₹ $725$.
If $a_1, a_2, a_3, \ldots, a_n$ are in AP, where $a_i>0$ for all $i$, show that $$ \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=\frac{n-1}{\sqrt{a_1}+\sqrt{a_n}}$$
Since, $a_1, a_2, a_3, \ldots, a_n$ are in AP.
$$\Rightarrow \quad a_2-a_1=a_3-a_2=\ldots=a_n-a_{n-1}=d \quad \text { [common difference] }$$
If $a_2-a_1=d$, then $\left(\sqrt{a_2}\right)^2-\left(\sqrt{a_1}\right)^2=d$
$$\begin{array}{ll} \Rightarrow & \left(\sqrt{a_2}-\sqrt{a_1}\right)\left(\sqrt{a_2}+\sqrt{a_1}\right)=d \\ \Rightarrow & \frac{1}{\sqrt{a_1}+\sqrt{a_2}}=\frac{\sqrt{a_2}-\sqrt{a_1}}{d} \end{array}$$
$$\begin{aligned} &\text { Similarly, }\\ &\begin{aligned} & \frac{1}{\sqrt{a_2}+\sqrt{a_3}}=\frac{\sqrt{a_3}-\sqrt{a_2}}{d} \\ & \qquad ... \qquad ... \qquad ...\\ & \qquad ... \qquad ... \qquad ...\\ & \qquad ... \qquad ... \qquad ...\\ & \frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=\frac{\sqrt{a_n}-\sqrt{a_{n-1}}}{d} \end{aligned} \end{aligned}$$
On adding these terms, we get
$$\begin{aligned} & \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}} \quad \text{[using above relations]}\\ = & \frac{1}{d}\left[\sqrt{a_2}-\sqrt{a_1}+\sqrt{a_3}-\sqrt{a_2}+\ldots+\sqrt{a_n}-\sqrt{a_{n-1}}\right] \\ = & \frac{1}{d}\left[\sqrt{a_n}-\sqrt{a_1}\right] \quad \text{.... (i)} \end{aligned}$$
Again, $\quad a_n=a_1+(n-1) d \quad\left[\because T_n=a+(n-1) d\right]$
$$\begin{aligned} &\begin{array}{ll} \Rightarrow & a_n-a_1=(n-1) d \\ \Rightarrow & \left(\sqrt{a_n}\right)^2-\left(\sqrt{a_1}\right)^2=(n-1) d \\ \Rightarrow & \left(\sqrt{a_n}-\sqrt{a_1}\right)\left(\sqrt{a_n}+\sqrt{a_1}\right)=(n-1) d \Rightarrow \sqrt{a_n}-\sqrt{a_1}=\frac{(n-1) d}{\sqrt{a_n}+\sqrt{a_1}} \end{array}\\ &\text { On putting this value in Eq. (i), we get }\\ &\begin{gathered} \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}} \\ =\frac{(n-1) d}{d\left(\sqrt{a_n}+\sqrt{a_1}\right)}=\frac{n-1}{\sqrt{a_n}+\sqrt{a_1}}\quad \text{Hence proved.} \end{gathered} \end{aligned}$$
Find the sum of the series
$$\left(3^3-2^3\right)+\left(5^3-4^3\right)+\left(7^3-6^3\right)+\supset \text { to (i) } n \text { terms. (ii) } 10 \text { terms. }$$
Given series, $\left(3^3-2^3\right)+\left(5^3-4^3\right)+\left(7^3-6^3\right)+\quad \text{.... (i)}$
$$=\left(3^3+5^3+7^3+7\right)-\left(2^3+4^3+6^3+\ldots\right)$$
Let $T_n$ be the $n$th term of the series (i),
$$ \begin{aligned} \text { then }\quad T_n & =\left(n \text { thterm of } 3^3, 5^3, 7^3, \ldots\right)-\left(n \text { thterm of } 2^3, 4^3, 6^3, \ldots\right)=(2 n+1)^3-(2 n)^3 \\ & =(2 n+1-2 n)\left[(2 n+1)^2+(2 n+1) 2 n+(2 n)^2\right]\left[\because a^3-b^3=(a-b)\left(a^2+a b+b^2\right)\right] \\ & =\left[4 n^2+1+4 n+4 n^2+2 n+4 n^2\right]=\left[12 n^2+6 n\right]+1 \end{aligned}$$
(i) Let $S_n$ denote the sum of $n$ term of series (i).
Then,
$$\begin{aligned} S_n & =\Sigma T_n=\Sigma\left(12 n^2+6 n\right) \\ & =12 \Sigma n^2+6 \Sigma n+\Sigma n \\ & =12 \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{6 n(n+1)}{2}+n \\ & =2 n(n+1)(2 n+1)+3 n(n+1)+n \\ & =2 n(n+1)(2 n+1)+3 n(n+1)+n \\ & =\left(2 n^2+2 n\right)(2 n+1)+3 n^2+3 n+n \\ & =4 n^3+2 n^2+4 n^2+2 n+3 n^2+3 n+n \\ & =4 n^3+9 n^2+6 n \end{aligned}$$
(ii) Sum of 10 terms,
$$\begin{aligned} S_{10} & =4 \times(10)^3+9 \times(10)^2+6 \times 10 \\ & =4 \times 1000+9 \times 100+60 \\ & =4000+900+60=4960 \end{aligned}$$