ExamGOAL
Books
31

Every progression is a sequence but the converse, i.e., every sequence is also a progression need not necessarily be true.

A
TRUE
B
FALSE
32

Any term of an AP (except first) is equal to half the sum of terms which are equidistant from it.

A
TRUE
B
FALSE
33

The sum or difference of two GP, is again a GP.

A
TRUE
B
FALSE
34

If the sum of $n$ terms of a sequence is quadratic expression, then it always represents an AP.

A
TRUE
B
FALSE
35
Subjective

Match the following.

Column I Column II
(i) $4,1, \frac{1}{4}, \frac{1}{16}$ (a) AP
(ii) $2,3,5,7$ (b) Sequence
(iii) $13,8,3,-2,-7$ (c) GP

Explanation

(i) $4,1, \frac{1}{4}, \frac{1}{16}$

$\Rightarrow \quad \frac{T_2}{T_1}=\frac{1}{4}\Rightarrow \frac{T_3}{T_2}=\frac{1}{4}\Rightarrow \frac{T_4}{T_3}=\frac{1/16}{1/4}=\frac{1}{4}$

Hence, it is a GP.

(ii) $2,3,5,7$

$$\begin{array}{ll} \because & T_2-T_1=3-2=1 \\ & T_3-T_2=5-3=2 \\ \because & T_2-T_1 \neq T_3-T_2 \end{array}$$

Hence, it is not an AP.

$$\begin{array}{ll} \text { Again, } & \frac{T_2}{T_1}=3 / 2 \Rightarrow \frac{T_3}{T_2}=5 / 3 \\ \because & \frac{T_2}{T_1} \neq \frac{T_3}{T_2} \end{array}$$

It is not a GP.

Hence, it is a sequence.

(iii) $13,8,3,-2,-7$

$$\begin{aligned} & T_2-T_1=8-13=-5 \\ & T_3-T_2=3-8=-5 \\ \because \quad & T_2-T_1=T_3-T_2 \end{aligned}$$

Hence, it is an AP.