ExamGOAL
Books
12
Subjective

There are 10 persons named $P_1, P_2, P_3, \ldots, P_{10}$. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement $P_1$ must occur whereas $P_4$ and $P_5$ do not occur. Find the number of such possible arrangements.

Explanation

Given that, $P_1, P_2, \ldots, P_{10}$, are 10 persons, out of which 5 persons are to be arranged but $P_1$ must occur whereas $P_4$ and $P_5$ never occur.

$\therefore$ Selection depends on only $10-3=7$ persons

As, we have already occur $P_1$, Therefore, we have to select only 4 persons out of 7 .

Number of selection $={ }^7 C_4=\frac{7!}{4!(7-4)!}=\frac{7!}{4!3!}=\frac{5040}{24 \times 6}=35$

$\therefore$ Required number of arrangement of 5 persons $=35 \times 5!=35 \times 120=4200$

13
Subjective

There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.

Explanation

$$\begin{aligned} \text { Total number of ways } & ={ }^{10} \mathrm{C}_1+{ }^{10} \mathrm{C}_2+{ }^{10} \mathrm{C}_3+{ }^{10} \mathrm{C}_4+{ }^{10} \mathrm{C}_5+{ }^{10} \mathrm{C}_6+\ldots+{ }^{10} \mathrm{C}_{10} \\ & =2^{10}-1 \quad [\because \quad ^nC_0+^nC_1+^nC_2+...=2^n]\\ & =1024-1=1023 \end{aligned}$$

14
Subjective

A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw?

Explanation

There are 2 white, three black and four red balls.

We have to draw 3 balls, out of these 9 balls in which atleast one black ball is included. Hence, we can select the balls in the following ways.

Black balls 1 2 3
Other than black 2 1 0

$$\begin{aligned} \therefore \text { Required number of selections } & ={ }^3 \mathrm{C}_1 \times{ }^6 \mathrm{C}_2+{ }^3 \mathrm{C}_2 \times{ }^6 \mathrm{C}_1+{ }^3 \mathrm{C}_3 \times{ }^6 \mathrm{C}_0 \\ & =3 \times 15+3 \times 6+1 \\ & =45+18+1=64 \end{aligned}$$

15
Subjective

If ${ }^n C_{r-1}=36,{ }^n C_r=84$ and ${ }^n C_{r+1}=126$, then find the value of ${ }^r C_2$.

Explanation

$$\begin{array}{lr} \text { Given, } & { }^n C_{r-1}=36 \quad \text{... (i)}\\ \Rightarrow & { }^n C_r=84 \quad \text{... (ii)}\\ \Rightarrow & { }^n C_{r+1}=126 \quad \text{... (iii)} \end{array}$$

On dividing Eq. (i) by Eq. (ii), we get

$\frac{{ }^n C_{r-1}}{{ }^n C_r}=\frac{36}{84} \quad\left[\begin{array}{l}\because{ }^n C_r=\frac{n!}{(n-r!r!)} \\ \text { and } n!=n(n-1)!\end{array}\right]$

$$\begin{array}{ll} \Rightarrow & \frac{n!}{(r-1)!\{n-(r-1)\}!} \cdot \frac{r!(n-r)!}{n!}=\frac{3}{7} \\ \Rightarrow & \frac{1}{(r-1)!(n-r+1)!} \cdot \frac{r(r-1)!(n-r)!}{1}=\frac{3}{7} \\ \Rightarrow & \frac{1 \cdot r}{(n-r+1)(n-r)!} \cdot(n-r)!=\frac{3}{7} \Rightarrow \frac{r}{n-r+1}=\frac{3}{7} \\ \Rightarrow & 7 r=3 n-3 r+3 \\ \Rightarrow & 10 r-3 n=3\quad \text{(iv)} \end{array}$$

On dividing Eq. (ii) by Eq. (iii), we get

$$\begin{array}{rlrl} & \frac{{ }^n C_r}{{ }^n C_{r+1}} =\frac{84}{126} \\ \Rightarrow & \frac{n!}{r!(n-r)!} \cdot \frac{(r+1)!(n-r-1)!}{n!} =\frac{14}{21} \\ \Rightarrow & \frac{1}{r!(n-r)!(n-r-1)!} \cdot \frac{(r+1) r!(n-r-1)!}{r} =\frac{2}{3} \Rightarrow \frac{r+1}{n-r}=\frac{2}{3} \\ \Rightarrow & 3 r+3=2 n-2 r \Rightarrow \quad 2 n-5 r=3\quad \text{... (v)} \end{array}$$

On multiplying Eq. (iv) by 2 and Eq. (v) by 3, we get

$$\begin{aligned} & 20 r-6 n=6 \quad \text{... (vi)}\\ & 6 n-15 r=9\quad \text{... (vii)} \end{aligned}$$

On adding Eqs. (vi) and (vii),

From Eq. (v),

$$\begin{aligned} 5 r & =15 \quad \Rightarrow \quad r=3 \\ 2 n & =3+15 \\ 2 n & =18 \quad \Rightarrow \quad n=9 \end{aligned}$$

$$\therefore \quad \quad{ }^r C_2={ }^3 C_2=\frac{3!}{2!1!} \quad=\frac{3 \times 2!}{2!}=3$$

16
Subjective

Find the number of integers greater than 7000 that can be formed with the digits 3, 5, 7, 8 and 9 where no digits are repeated.

Explanation

Here, we have to find the number of integers greater than 7000 with the digits $3,5,7,8$ and 9. So, with these digits we can make maximum five-digit number because repeatition is not allowed.

Now, all the five-digit numbers are greater than 7000 .

Number of ways of forming 5 -digit number $=5 \times 4 \times 3 \times 2 \times 1=120$

and all the four-digit numbers greater than 7000 can be formed in following manner.

Thousand place can be filled in 3 ways. Hundred place can be filled in 4 ways. Tenth place can be filled in 3 ways. Units place can be filled in 2 ways.

Thus, we have total number of 4-digit number $=3 \times 4 \times 3 \times 2=72$

$\therefore$ Total number of integers $=120+72=192$