ExamGOAL
Books
18
Subjective

Show that the solution set of the following system of linear inequalities is an unbounded region $2 x+y \geq 8, x+2 y \geq 10, x \geq 0, y \geq 0$.

Explanation

Consider the inequation $2 x+y \geq 8$ as an equation, we have

$$\begin{aligned} 2 x+y & =8 \\ \Rightarrow \quad y & =8-2 x \end{aligned}$$

$x$ 0 4 3
$y$ 8 0 2

The line $2 x+y=8$ intersects coordinate axes at $(4,0)$ and $(0,8)$. Now, point $(0,0)$ does not satisfy the inequation $2 x+y \geq 8$. Therefore, half plane does not contain origin.

Consider the inequation $x+2 y \geq 10$, as an equation, we have

$$\begin{aligned} & x+2 y=10 \\ \Rightarrow \quad & 2 y=10-x \end{aligned}$$

$x$ 10 0 8
$y$ 0 5 1

The line $2 x+y=8$ intersects the coordinate axes at $(10,0)$ and $(0,5)$.

Now, point $(0,0)$ does not satisfy the inequation $x+2 y \geq 10$.

Therefore, half plane does not contain $(0,0)$.

Consider the inequation $x \geq 0$ and $y \geq 0$ clearly, it represents the region in first quadrant.

The graph of the above inequations is given below

It is clear from the graph that common shaded portion is unbounded.

19
MCQ (Single Correct Answer)

If $x<5$, then

A
$-x<-5$
B
$-x \leq-5$
C
$-x>-5$
D
$-x \geq-5$
20
MCQ (Single Correct Answer)

If $x, y$ and $b$ are real numbers and $x< y, b<0$, then

A
$\frac{x}{b}<\frac{y}{b}$
B
$\frac{x}{b} \leq \frac{y}{b}$
C
$\frac{x}{b}>\frac{y}{b}$
D
$\frac{x}{b} \geq \frac{y}{b}$
21
MCQ (Single Correct Answer)

If $-3 x+17<-13$, then

A
$x \in(10, \infty)$
B
$x \in[10, \infty)$
C
$x \in(-\infty, 10]$
D
$x \in[-10,10)$
22
MCQ (Single Correct Answer)

If $x$ is a real number and $|x|<3$, then

A
$x \geq 3$
B
$-3< x< 3$
C
$x \leq-3$
D
$-3 \leq x \leq 3$