ExamGOAL
Books
41
Subjective

$\sin^3x\cos^3x$

Explanation

$$\begin{aligned} \text{Let}\quad y & =\sin ^3 x \cos ^3 x \\ \therefore\quad \frac{d y}{d x} & =\sin ^3 x \cdot \frac{d}{d x} \cos ^3 x+\cos ^3 x \frac{d}{d x} \sin ^3 x \quad \text{[by product rule] }\\ & =\sin ^3 x \cdot 3 \cos ^2 x(-\sin x)+\cos ^3 x \cdot 3 \sin ^2 x \cos x \quad \text{[by chain rule] }\\ & =-3 \cos ^2 x \sin ^4 x+3 \sin ^2 x \cos ^4 x \\ & =3 \sin ^2 x \cos ^2 x\left(\cos ^2 x-\sin ^2 x\right) \\ & =3 \sin ^2 x \cos ^2 x \cos 2 x \\ & =\frac{3}{4}(2 \sin x \cos x)^2 \cos 2 x \\ & =\frac{3}{4} \sin ^2 2 x \cos 2 x \end{aligned}$$

42
Subjective

$\frac{1}{a x^2+b x+c}$

Explanation

$$\begin{aligned} \text{Let}\quad y & =\frac{1}{a x^2+b x+c}=\left(a x^2+b x+c\right)^{-1} \\ \therefore\quad \frac{d y}{d x} & =-\left(a x^2+b x+c\right)^{-2}(2 a x+b) \quad \text{[by chain rule]}\\ & =\frac{-(2 a x+b)}{\left(a x^2+b x+c\right)^2} \end{aligned} $$

43
Subjective

$\cos \left(x^2+1\right)$

Explanation

Let $\quad f(x)=\cos \left(x^2+1\right)$ and $f(x+h)=\cos \left\{(x+h)^2+1\right\}$

$\therefore \quad \frac{d}{d x} f(x)=\lim _\limits{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$\begin{aligned} & =\lim _{h \rightarrow 0} \frac{\cos \left\{(x+h)^2+1\right\}-\cos \left(x^2+1\right)}{h} \\ & =\lim _{h \rightarrow 0} \frac{-2 \sin \left\{\frac{(x+h)^2+1+x^2+1}{2}\right\} \sin \left\{\frac{(x+h)^2+1-x^2-1}{2}\right\}}{h} \\ & {\left[\because \cos C-\cos D=-2 \sin \frac{C+D}{2} \cdot \sin \frac{C-D}{2}\right]} \end{aligned}$$

$$ \begin{aligned} & =\lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \left\{\frac{(x+h)^2+x^2+2}{2}\right\} \sin \left\{\frac{(x+h)^2-x^2}{2}\right\}\right] \\ & =\lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \left\{\frac{(x+h)^2+x^2+2}{2}\right\} \sin \left\{\frac{x^2+h^2+2 x h-x^2}{2}\right\}\right] \\ & =\lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \left\{\frac{(x+h)^2+x^2+2}{2}\right\} \sin \left\{\frac{h^2+2 h x}{2}\right\}\right] \\ & =-2 \lim _{h \rightarrow 0} \sin \left\{\frac{(x+h)^2+x^2+2}{2}\right\} \lim _{h \rightarrow 0}\left\{\frac{\sin h\left(\frac{h+2 x}{2}\right)}{h\left(\frac{h+2 x}{2}\right)}\right\} \times\left(\frac{h+2 x}{2}\right) \\ & =-2 \lim _{h \rightarrow 0} \sin \left\{\frac{(x+h)^2+x^2+2}{2}\right\} \lim _{h \rightarrow 0}\left(\frac{h+2 x}{2}\right)\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right] \\ & =-2 x \sin \left(x^2+1\right) \quad {[\because x \rightarrow 0 \Rightarrow k x \rightarrow 0]}\\ \end{aligned}$$

44
Subjective

$$ \frac{a x+b}{c x+d} $$

Explanation

$$\begin{aligned} &\begin{aligned} \text{Let}\quad & f(x)=\frac{a x+b}{c x+d} \\ & f(x+h)=\frac{a(x+h)+b}{c(x+h)+d} \\ \therefore \quad & \frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h)-f(x)] \\ & =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{a(x+h)+b}{c(x+h)+d}-\frac{a x+b}{c x+d}\right] \\ & =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{a x+b+a h}{c(x+h)+d}-\frac{a x+b}{c x+d}\right] \\ & =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{(a x+a h+b)(c x+d)-(a x+b\{c(x+h)+d\}}{\{c(x+h)+d\}(c x+d)}\right] \\ & =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{(a x+a h+b)(c x+d)-(a x+b)(c x+c h+d)}{\{c(x+h)+d)\}(c x+d)}\right] \\ & =\lim _{h \rightarrow 0} \frac{1}{h}\left[\begin{array}{l} \\ \frac{a c x^2+a c h x+b c x+a d x+a d h+b d-a c x^2+a c h x+a d x+b c x+b c h+b d}{\{c(x+h)+d\}(c x+d)} \end{array}\right] \end{aligned}\\ &\begin{aligned} & =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{a d h-b c h}{\{c(x+h)+d\}(c x+d)}\right] \\ & =\lim _{h \rightarrow 0} \frac{a c-b d}{\{c(x+h)+d\}(c x+d)} \\ & =\frac{a c-b d}{(c x+d)^2} \end{aligned} \end{aligned}$$

45
Subjective

$x^{2/3}$

Explanation

$$\begin{aligned} \text{Let}\quad f(x) & =x^{2 / 3} \\ f(x+h) & =(x+h)^{2 / 3} \\ \text{Now,}\quad \frac{d}{d x} f(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ & =\lim _{h \rightarrow 0} \frac{1}{h}\left[(x+h)^{2 / 3}-x^{2 / 3}\right] \\ & =\lim _{h \rightarrow 0} \frac{1}{h}\left[x^{2 / 3}\left(1+\frac{h}{x}\right)^{2 / 3}-x^{2 / 3}\right] \end{aligned}$$

$$\begin{aligned} & =\lim _{h \rightarrow 0} \frac{1}{h}\left[x^{2 / 3}\left(1+\frac{h}{x} \cdot \frac{2}{3}+\frac{2}{3}\left(\frac{2}{3}-1\right) \frac{h^2}{x^2}+\cdots\right)-1\right] \\ & \quad\left[\because(1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\cdots\right] \\ & =\lim _{h \rightarrow 0} \frac{1}{h}\left[x^{2 / 3}\left(\frac{2}{3} \cdot \frac{h}{x}-\frac{2}{9} \cdot \frac{h^2}{x^2}+\cdots\right)\right] \\ & =\lim _{h \rightarrow 0} \frac{x^{2 / 3}}{h} \cdot \frac{2}{3} \frac{h}{x}\left(1-\frac{1}{3} \cdot \frac{h}{x}+\cdots\right) \\ & =\frac{2}{3} x^{2 / 3-1}=\frac{2}{3} x^{-1 / 3} \end{aligned}$$

Alternate Method

$$ \begin{aligned} & \text { Let } \quad f(x)=x^{2 / 3} \\ & f(x+h)=(x+h)^{2 / 3} \\ & \therefore \quad \frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ & =\lim _{(h \rightarrow 0}\left[\frac{(x+h) 2 / 3-x^{2 / 3}}{h}\right]=\lim _{(x+h) \rightarrow x}\left[\frac{(x+h) 2 / 3-x^{2 / 3}}{(x+h)-x}\right] \\ & =\frac{2}{3}(x)^{2 / 3-1} \left[\because \lim _{x \rightarrow a} \frac{x^x-a^n}{x-a}=n a^{n-1}\right]\\ & =\frac{2}{3} x^{-1 / 3} \end{aligned}$$