ExamGOAL
Books
62
MCQ (Single Correct Answer)

$\lim _\limits{x \rightarrow 1} \frac{(\sqrt{x}-1)(2 x-3)}{2 x^2+x-3}$ is equal to

A
$\frac{1}{10}$
B
$\frac{-1}{10}$
C
1
D
None of these
63
MCQ (Single Correct Answer)

If $f(x)=\left\{\begin{array}{cc}\frac{\sin [x]}{[x]}, & {[x] \neq 0} \\ 0, & {[x]=0}\end{array}\right.$, where [.] denotes the greatest integer function, then $\lim _\limits{x \rightarrow 0} f(x)$ is equal to

A
1
B
0
C
$-$1
D
Does not exist
64
MCQ (Single Correct Answer)

$\lim _\limits{x \rightarrow 0} \frac{|\sin x|}{x}$ is equal to

A
1
B
$$=-1$$
C
Does not exist
D
None of these
65
MCQ (Single Correct Answer)

If $f(x)=\left\{\begin{array}{ll}x^2-1, & 0< x< 2 \\ 2 x+3, & 2 \leq x < 3\end{array}\right.$, then the quadratic equation whose roots are $\lim _\limits{x \rightarrow 2^{-}} f(x)$ and $\lim_\limits{x \rightarrow 2^{+}}{f(x)}$ is

A
$x^2-6 x+9=0$
B
$x^2-7 x+8=0$
C
$x^2-14 x+49=0$
D
$x^2-10 x+21=0$
66
MCQ (Single Correct Answer)

$\lim _{x \rightarrow 0} \frac{\tan 2 x-x}{3 x-\sin x}$ is equal to

A
2
B
$\frac{1}{2}$
C
$\frac{-1}{2}$
D
$\frac{1}{4}$