Three consecutive vertices of a parallelogram $A B C D$ are $A(6,-2,4)$, $B(2,4,-8)$ and $C(-2,2,4)$. Find the coordinates of the fourth vertex.
Let the coordinates of the fourth vertices $D(x, y, z)$.
$$\begin{aligned} \text{Mid-points of diagonal }AC, \quad & x=\frac{x_1+x_2}{2}, y=\frac{y_1+y_2}{2}, z=\frac{z_1+z_2}{2} \\ \text{and}\quad & x=\frac{6-2}{2}=2, y=\frac{-2+2}{2}=0, z=\frac{4+4}{2}=4 \end{aligned}$$
Since, the mid-point of $A C$ are $(2,0,4)$.
Now, mid-point of $B D, 2=\frac{x+2}{2} \Rightarrow x=2$
$$\begin{array}{ll} \Rightarrow & 0=\frac{y+4}{2} \Rightarrow y=-4 \\ \Rightarrow & 4=\frac{z-8}{2} \Rightarrow z=16 \end{array}$$
So, the coordinates of fourth vertex $D$ is $(2,-4,16)$.
Show that the $\triangle A B C$ with vertices $A(0,4,1), B(2,3,-1)$ and $C(4,5,0)$ is right angled.
Given that, the vertices of the $\triangle A B C$ are $A(0,4,1), B(2,3,-1)$ and $C(4,5,0)$.
Now,
$$\begin{aligned} A B & =\sqrt{(0-2)^2+(4-3)^3+(1+1)^2} \\ & =\sqrt{4+1+4}=3 \\ B C & =\sqrt{(2-4)^2+(3-5)^2+(-1-0)^2} \\ & =\sqrt{4+4+1}=3 \\ A C & =\sqrt{(0-4)^2+(4-5)^2+(1-0)^2} \\ & =\sqrt{16+1+1}=\sqrt{18} \end{aligned}$$
$$\begin{aligned} & \because \quad A C^2=A B^2+B C^2 \\ & \Rightarrow \quad 18=9+9 \end{aligned}$$
Hence, vertices $\triangle A B C$ is a right angled triangle.
Find the third vertex of triangle whose centroid is origin and two vertices are $(2,4,6)$ and $(0,-2,5)$.
Let third vertex of $\Delta ABC$ i.e., is $A(x,y,z)$.
Given that, the coordinate of centroid $G$ are $(0,0,0)$.
$$\begin{aligned} \because \quad 0 & =\frac{x+2+0}{3} \Rightarrow x=-2 \\ 0 & =\frac{y+4-2}{3} \Rightarrow y=-2 \\ 0 & =\frac{z+6-5}{2} \Rightarrow z=-1 \end{aligned}$$
Hence, the third vertex of triangle is $(-2,-2,-1)$.
Find the centroid of a triangle, the mid-point of whose sides are $D(1,2,-3), E(3,0,1)$ and $F(-1,1,-4)$.
Given that, mid-points of sides are $D(1,2,-3), E(3,0,1)$ and $F(-1,1,-4)$.
Let the vertices of the $\triangle A B C$ are $A\left(x_1, y_1, z_1\right), B\left(x_2, y_2, z_3\right)$ and $C\left(x_3, y_3, z_3\right)$.
Then, mid-point of $B C$ are $(1,2,-3)$.
$$\begin{aligned} \therefore \quad 1 & =\frac{x_2+x_3}{2} \Rightarrow x_2+x_3=2 \quad \text{... (i)}\\ 2 & =\frac{y_2+y_3}{2} \Rightarrow y_2+y_3=4 \quad \text{... (ii)}\\ -3 & =\frac{z_2+z_3}{2} \Rightarrow z_2+z_3=-6 \quad \text{... (iii)} \end{aligned}$$
Similarly for the sides AB and AC,
$$\begin{array}{ll} \Rightarrow & -1=\frac{x_1+x_2}{2} \Rightarrow x_1+x_2=-2 \quad \text{... (iv)}\\ \Rightarrow & 1=\frac{y_1+y_2}{2} \Rightarrow y_1+y_2=2 \quad \text{... (v)}\\ \Rightarrow & -4=\frac{z_1+z_2}{2} \Rightarrow z_1+z_2=-8 \quad \text{... (vi)}\\ \Rightarrow & 3=\frac{x_1+x_3}{2} \Rightarrow x_1+x_3=6 \quad \text{... (vii)}\\ \Rightarrow & 0=\frac{y_1+y_3}{2} \Rightarrow y_1+y_3=0 \quad \text{... (viii)}\\ \Rightarrow & 1=\frac{z_1+z_3}{2} \Rightarrow z_1+z_3=2 \quad \text{... (ix)} \end{array}$$
On adding Eqs. (i) and (iv), we get
$$x_1+2 x_2+x_3=0\quad \text{.... (x)}$$
On adding Eqs. (ii) and (v), we get
$$y_1+2 y_2+y_3=6\quad \text{.... (xi)}$$
On adding Eqs. (iii) and (vi), we get
$$z_1+2 z_2+z_3=-14\quad \text{.... (xii)}$$
From Eqs. (vii) and (x),
$$2 x_2=-6 \Rightarrow x_2=-3$$
If $x_2=-3$, then $x_3=5$
If $x_3=5$, then $x_1=1, x_2=-3, x_3=5$
From Eqs. (xi) and (viii),
$$2 y_2=6 \Rightarrow y_2=3$$
If $y_2=3$, then $y_1=-1 \quad$ If $y_1=-1$, then $y_3=1, \quad y_2=3, y_3=1$ From Eqs. (xii) and (ix),
$$\begin{aligned} 2 z_2 & =-16 \Rightarrow z_2=-8 \\ z_2 & =-8, \text { then } z_1=0 \\ z_1 & =0, \text { then } z_3=2 \\ z_1 & =0, z_2=-8, z_3=2 \end{aligned}$$
So, the points are $A(1-1,0), B(-3,3,-8)$ and $C(5,1,2)$.
$\therefore$ Centroid of the triangle $=G\left(\frac{1-3+5}{3}, \frac{-1+3+1}{3}, \frac{0-8+2}{3}\right)$ i.e., $G(1,1,-2)$
The mid-points of the sides of a triangle are $(5,7,11),(0,8,5)$ and $(2,3,-1)$. Find its vertices.
Let vertices of the $\triangle A B C$ are $A\left(x_1, y_1, z_1\right), B\left(x_2, y_2, z_2\right)$ and $C\left(x_3, y_3, z_3\right)$, then the mid-point of $B C(5,7,11)$.
$$\begin{aligned} & 5=\frac{x_2+x_3}{2} \Rightarrow x_2+x_3=10 \quad \text{... (i)}\\ & 7=\frac{y_2+y_3}{2} \Rightarrow y_2+y_3=14 \quad \text{... (ii)}\\ & 11=\frac{z_2+z_3}{2} \Rightarrow z_2+z_3=22\quad \text{... (iii)} \end{aligned}$$
Similarly for the sides AB and AC,
$$\begin{aligned} & 2=\frac{x_1+x_2}{2} \Rightarrow x_1+x_2=4 \quad \text{.... (iv)}\\ & 3=\frac{y_1+y_2}{2} \Rightarrow y_1+y_2=6 \quad \text{.... (v)}\\ & 1=\frac{z_1+z_2}{2} \Rightarrow z_1+z_2=-2 \quad \text{.... (vi)}\\ & 0=\frac{x_1+x_3}{2} \Rightarrow x_1+x_3=0 \quad \text{.... (vii)}\\ & 8=\frac{y_1+y_3}{2} \Rightarrow y_1+y_3=16 \quad \text{.... (viii)}\\ & 5=\frac{z_1+z_3}{2} \Rightarrow z_1+z_3=10\quad \text{.... (ix)} \end{aligned}$$
From Eqs. (i) and (iv),
$x_1+2x_2+x_3=14\quad \text{.... (x)}$
From Eqs. (ii) and (v),
$y_1+2y_2+y_3=20\quad \text{.... (xi)}$
From Eqs. (iii) and (vi),
$z_1+2z_2+z_3=20\quad \text{.... (xii)}$
From Eqs. (vii) and (x),
$$\begin{aligned} 2 x_2 & =14 \Rightarrow x_2=7 \\ x_2 & =7, \text { then } x_3=10-7=3 \\ x_3 & =3 \text {, then } x_1=-3 \\ x_1 & =-3, x_2=7, x_3=3 \end{aligned}$$
From Eqs. (viii) and (xi),
$$\begin{aligned} 2 y_2 & =4 \Rightarrow y_2=2 \\ y_2 & =2, \text { then } y_1=4 \\ y_1 & =4, \text { then } y_3=12 \\ y_1 & =4, y_2=2, y_3=12 \end{aligned}$$
From Eqs. (ix) and (xii),
$$\begin{aligned} &\begin{aligned} 2 z_2 & =10 \Rightarrow z_2=5 \\ z_2 & =5, \text { then } z_1=-7 \\ z_1 & =-7, \text { then } z_3=17 \\ z_1 & =-7, z_2=5, z_3=17 \end{aligned}\\ &\text { So, the vertices are } A(-3,4,-7), B(7,2,5) \text { and } C(3,12,17) \text {. } \end{aligned}$$