Show that the three points $A(2,3,4), B(1,2,-3)$ and $C(-4,1,-10)$ are collinear and find the ratio in which $C$ divides $A B$.
Given points are $A(2,3,4), B(-1,2,-3)$ and $C(-4,1,-10)$.
$$\begin{aligned} & \therefore \quad A B=\sqrt{(2+1)^2+(3-2)^2+(4+3)^2} \\ & =\sqrt{9+1+49}=\sqrt{59} \\ & B C=\sqrt{(-1+4)^2+(2-1)^2+(-3+10)^2} \\ & =\sqrt{9+1+49}=\sqrt{59} \\ & A C=\sqrt{(2+4)^2+(3-1)^2+(4+10)^2} \\ & =\sqrt{36+4+196} \\ & =\sqrt{236}=2 \sqrt{59} \\ & \text { Now, } \\ & A B+B C=\sqrt{59}+\sqrt{59}=2 \sqrt{59} \\ & \because \quad A B+B C=A C \end{aligned}$$
Hence, the points $A, B$ and $C$ are collinear.
Now, $$A C: B C=2 \sqrt{59}: \sqrt{59}=2: 1$$
So, $C$ divide $A B$ in $2: 1$ externally.
The mid-point of the sides of a triangle are $(1,5,-1),(0,4,-2)$ and $(2,3,4)$. Find its vertices and also find the centroid of the triangle.
Let the vertices of $\triangle A B C$ are $A\left(x_1, y_1, z_1\right), B\left(x_2, y_2, z_2\right)$ and $C\left(x_3, y_3, z_3\right)$.
Since, the mid-point of side $B C$ is $D(1,5,-1)$.
Then,
$$\begin{aligned} & \frac{x_2+x_3}{2}=1 \Rightarrow x_2+x_3=2 \quad \text{.... (i)}\\ & \frac{y_2+y_3}{2}=5 \Rightarrow y_2+y_3=10 \quad \text{.... (ii)}\\ & \frac{z_2+z_3}{2}=-1 \Rightarrow z_2+z_3=-2\quad \text{.... (iii)} \end{aligned}$$
Similarly, the mid-points of $A B$ and $A C$ are $F(2,3,4)$ and $E(0,4,-2)$,
$$\begin{aligned} & \frac{x_1+x_2}{2}=2 \Rightarrow x_1+x_2=4 \quad \text{.... (iv)}\\ & \frac{y_1+y_2}{2}=3 \Rightarrow y_1+y_2=6 \quad \text{.... (v)}\\ \text{and}\quad & \frac{z_1+z_2}{2}=4 \Rightarrow z_1+z_2=8\quad \text{.... (vi)} \end{aligned}$$
Now,
$$\begin{gathered} \frac{x_1+x_3}{2}=0 \Rightarrow x_1+x_3=0 \quad \text{.... (vii)}\\ \frac{y_1+y_3}{2}=4 \Rightarrow y_1+y_3=8 \quad \text{.... (viii)}\\ \frac{z_1+z_3}{2}=-2 \Rightarrow z_1+z_3=-4\quad \text{.... (ix)} \end{gathered}$$
$$\begin{aligned} &\text { From Eqs. (i) and (iv), }\\ &x_1+2 x_2+x_3=6\quad \text{.... (x)} \end{aligned}$$
$$\begin{aligned} &\text { From Eqs. (ii) and (v), }\\ &y_1+2 y_2+y_3=16\quad \text{.... (xi)} \end{aligned}$$
$$\begin{aligned} &\text { From Eqs. (iii) and (vi), }\\ &z_1+2 z_2+z_3=6\quad \text{.... (xii)} \end{aligned}$$
$$\begin{aligned} &\text { From Eqs. (vii) and (x), }\\ &\begin{aligned} 2 x_2 & =6 \Rightarrow x_2=3 \\ x_2 & =3, \text { then } x_3=-1 \\ x_3 & =-1 \end{aligned} \end{aligned}$$
Then, $$x_1=1 \Rightarrow x_1=1, x_2=3, x_2=-1$$
From Eqs. (viii) and (xi),
$$\begin{aligned} 2 y_2 & =8 \Rightarrow y_2=4 \\ y_2 & =4 \end{aligned}$$
Then,
$$\begin{aligned} & y_1=2 \\ & y_1=2 \\ \text{Then,}\quad & y_3=6 \\ \Rightarrow \quad & y_1=2, y_2=4, y_3=6 \end{aligned}$$
From Eqs. (ix) and (xii),
$$\begin{aligned} 2 z_2 & =10 \Rightarrow z_2=5 \\ z_2 & =5 \\ \text{Then,}\quad z_1 & =3 \\ z_1 & =3 \\ \text{Then,}\quad z_3 & =-7 \\ \Rightarrow \quad z_1 & =3, z_2=5, z_3=-7 \end{aligned}$$
$\Rightarrow \quad z_1=3, z_2=5, z_3=-7$
So, the vertices of the triangle $A(1,2,3), B(3,4,5)$ and $C(-1,6,-7)$.
Hence, centroid of the triangle $G\left(\frac{1+3-1}{3}, \frac{2+4+6}{3}, \frac{3+5-7}{3}\right)$ i.e., $G(1,4,1 / 3)$.
Prove that the points $(0,-1,-7),(2,1,-9)$ and $(6,5,-13)$ are collinear. Find the ratio in which the first point divides the join of the other two.
Given points are $A(0,-1,-7), B(2,1,-9)$ and $C(6,5,-13)$
$$\begin{aligned} & A B=\sqrt{(0-2)^2+(-1-1)^2+(-7+9)^2}=\sqrt{4+4+4}=2 \sqrt{3} \\ & B C=\sqrt{(2-6)^2+(1-5)^2+(-9+13)^2}=\sqrt{16+16+16}=4 \sqrt{3} \\ & A C=\sqrt{(0-6)^2+(-1-5)^2+(-7+13)^2}=\sqrt{36+36+36}=6 \sqrt{3} \end{aligned}$$
$$\begin{aligned} &\begin{array}{ll} \because & A B+B C=2 \sqrt{3}+4 \sqrt{3}=6 \sqrt{3} \\ \text { So, } & A B+B C=A C \end{array}\\ &\text { Hence, the points } A, B \text { and } C \text { are collinear. } \end{aligned}$$
$$\begin{aligned} &A B: A C=2 \sqrt{3}: 6 \sqrt{3}=1: 3\\ &\text { So, point } A \text { divide } B \text { and } C \text { in 1: 3 externally. } \end{aligned}$$
What are the coordinates of the vertices of a cube whose edge is 2 units, one of whose vertices coincides with the origin and the three edges passing through the origin, coincides with the positive direction of the axes through the origin?
The coordinates of the cube which edge is 2 units, are $(2,0,0),(2,2,0),(0,2,0)$, $(0,2,2),(0,0,2),(2,0,2),(0,0,0)$ and $(2,2,2)$.
The distance of point $P(3,4,5)$ from the $Y Z$-plane is