ExamGOAL
Books
28

If the seventh term from the beginning and the end in the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^n$ are equal, then $n$ equals to ............ .

Explanation

Given expansions is $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^n$.

$$T_7=T_{6+1}={ }^n C_6(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^6\quad \text{.... (i)}$$

Since, $T_7$ from end is same as the $T_7$ from beginning of $\left(\frac{1}{\sqrt[3]{3}}+\sqrt[3]{2}\right)^n$.

Then, $$T_7={ }^n C_6\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^6\quad \text{.... (ii)}$$

Given that,

$${ }^n C_6(2)^{\frac{n-6}{3}}(3)^{-6 / 3}={ }^n C_6(3)^{-\frac{(n-6)}{3}} 2^{6 / 3}$$

$\Rightarrow\quad (2)^{\frac{n-12}{3}}=\left(\frac{1}{3^{1 / 3}}\right)^{n-12}$

which is true, when $\frac{n-12}{3}=0$.

$$\Rightarrow \quad n-12=0 \Rightarrow n=12$$

29

The coefficient of $a^{-6} b^4$ in the expansion of $\left(\frac{1}{a}-\frac{2 b}{3}\right)^{10}$ is $\qquad$

Explanation

Given expansion is $\left(\frac{1}{a}-\frac{2 b}{3}\right)^{10}$.

Let $T_{t+1}$ has the coefficient of $a^{-6} b^4$.

$\therefore \quad T_{r+1}={ }^{10} C_r\left(\frac{1}{a}\right)^{10-r}\left(-\frac{2 b}{3}\right)^t$

For coefficient of $a^{-6} b^4, \quad 10-r=6 \Rightarrow r=4$

Coefficient of $a^{-6} b^4={ }^{10} C_4(-2 / 3)^4$

$$\therefore \quad =\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{61 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{2^4}{3^4}=\frac{1120}{27}$$

30

Middle term in the expansion of $\left(a^3+b a\right)^{28}$ is ............ .

Explanation

Given expansion is $\left(a^3+b a\right)^{28}$.

$$\begin{aligned} & \because \quad n=28 \quad \text{[even]}\\ & \therefore \quad \text { Middle term }=\left(\frac{28}{2}+1\right) \text { th term }=15 \text { th term } \\ & \therefore \quad T_{15}=T_{14+1} \\ & ={ }^{28} C_{14}\left(a^3\right)^{28-14}(b a)^{14} \\ & ={ }^{28} C_{14} a^{42} b^{14} a^{14} \\ & ={ }^{28} C_{14} a^{56} b^{14} \end{aligned}$$

31

The ratio of the coefficients of $x^p$ and $x^q$ in the expansion of $(1+x)^{p+q}$ is .............. .

Explanation

Given expansion is $(1+x)^{p+q}$.

$\therefore \quad$ Coefficient of $x^p={ }^{p+q} C_P$

and coefficient of $x^q={ }^{p+q} C_q$

$\therefore \quad \frac{{ }^{p+q} C_p}{{ }^{p+q} C_q}=\frac{p+q C_p}{p+q} C_p=1: 1$

32

The position of the term independent of $x$ in the expansion of $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^2}\right)^{10}$ is ............. .

Explanation

Given expansion is $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^2}\right)^{10}$.

Let the constant term be $T_{r+1}$.

Then,

$$\begin{aligned} T_{r+1} & ={ }^{10} C_r\left(\sqrt{\frac{x}{3}}\right)^{10-r}\left(\frac{3}{2 x^2}\right)^r \\ & ={ }^{10} C_r \cdot x^{\frac{10-r}{2}} \cdot 3^{\frac{-10+r}{2}} \cdot 3^r \cdot 2^{-r} \cdot x^{-2 r} \\ & ={ }^{10} C_r x^{\frac{10-5 r}{2}} 3^{\frac{-10+3 r}{2}} 2^{-r} \end{aligned}$$

For constant term, $10-5 r=0 \Rightarrow r=2$

Hence, third term is independent of $x$./p>