ExamGOAL
Books
10
Subjective

If the coefficient of second, third and fourth terms in the expansion of $(1+x)^{2n}$ are in A.P, then show that $2n^2-9n+7=0$.

Explanation

Given expansion is $(1+x)^{2 n}$.

Now,

$$\begin{aligned} & \text { coefficient of } 2 \text { nd term }={ }^{2 n} \mathrm{C}_1 \\ & \text { Coefficient of 3rd term }={ }^{2 n} \mathrm{C}_2 \\ & \text { Coefficient of 4th term }={ }^{2 n} C_3 \end{aligned}$$

Given that, ${ }^{2 n} C_1,{ }^{2 n} C_2$ and ${ }^{2 n} C_3$ are in AP.

$$\begin{aligned} & \text { Then, } & 2^{2{ }^{2 n} C_2} & ={ }^{2 n} C_1+{ }^{2 n} C_3 \\ \Rightarrow & & 2\left[\frac{2 n(2 n-1)(2 n-2)!}{2 \times 1 \times(2 n-2)!}\right] & =\frac{2 n(2 n-1)!}{(2 n-1)!}+\frac{2 n(2 n-1)(2 n-2)(2 n-3)!}{3!(2 n-3)!} \\ \Rightarrow & & n(2 n-1) & =n+\frac{n(2 n-1)(2 n-2)}{6} \\ \Rightarrow & & n(12 n-6) & =n\left(6+4 n^2-4 n-2 n+2\right) \\ \Rightarrow & & 12 n-6 & =\left(4 n^2-6 n+8\right) \\ \Rightarrow & & 6(2 n-1) & =2\left(2 n^2-3 n+4\right) \\ \Rightarrow & & 3(2 n-1) & =2 n^2-3 n+4 \\ \Rightarrow & & 2 n^2-3 n+4-6 n+3 & =0 \\ \Rightarrow & & 2 n^2-9 n+7 & =0 \end{aligned}$$

11
Subjective

Find the coefficient of $x^4$ in the expansion of $\left(1+x+x^2+x^3\right)^{11}$.

Explanation

Given, expansion

$$\begin{aligned} & =\left(1+x+x^2+x^3\right)^{11}=\left[(1+x)+x^2(1+x)\right]^{11} \\ & =\left[(1+x)\left(1+x^2\right)\right]^{11}=(1+x)^{11} \cdot\left(1+x^2\right)^{11} \end{aligned}$$

Now, above expansion becomes

$$\begin{aligned} & =\left({ }^{11} C_0+{ }^{11} C_1 x+{ }^{11} C_2 x^2+{ }^{11} C_3 x^3+{ }^{11} C_4 x^4+\ldots\right)\left({ }^{11} C_0+{ }^{11} C_1 x^2+{ }^{11} C_2 x^4+\ldots\right) \\ & =\left(1+11 x+55 x^2+165 x^3+330 x^4+\ldots\right)\left(1+11 x^2+55 x^4+\ldots\right) \end{aligned}$$

$\therefore$ Coefficient of $x^4=55+605+330=990$

12
Subjective

If $p$ is a real number and the middle term in the expansion of $\left(\frac{p}{2}+2\right)^8$ is 1120 , then find the value of $p$.

Explanation

Given expansion is $\left(\frac{p}{2}+2\right)^8$.

Here, $n=8\quad$ [even]

Since, this Binomial expansion has only one middle term i.e., $\left(\frac{8}{2}+1\right)$ th $=5$ th term

$$\begin{array}{l} & T_5 & =T_{4+1}={ }^8 C_4\left(\frac{p}{2}\right)^{8-4} \cdot 2^4 \\ \Rightarrow \quad & 1120 & ={ }^8 C_4 p^4 \cdot 2^{-4} 2^4 \\ \Rightarrow \quad & 1120 & =\frac{8 \times 7 \times 6 \times 5 \times 4!}{4!\times 4 \times 3 \times 2 \times 1} p^4 \end{array}$$

$$\begin{aligned} & \Rightarrow \quad 1120=7 \times 2 \times 5 \times p^4 \\ & \Rightarrow \quad p^4=\frac{1120}{70}=16 \Rightarrow p^4=2^4 \\ & \Rightarrow \quad p^2=4 \Rightarrow p= \pm 2 \end{aligned}$$

13
Subjective

Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2 n}$ is $$\frac{1 \times 3 \times 5 \times \ldots \times(2 n-1)}{n!} \times(-2)^n$$

Explanation

Given, expansion is $\left(x-\frac{1}{x}\right)^{2 n}$. This Binomial expansion has even power. So, this has one middle term.

$$\begin{aligned} \text{i.e.,}\quad \left(\frac{2 n}{2}+1\right) \text { th term }=(n+1) \text { th term } \\ T_{n+1} & ={ }^{2 n} C_n(x)^{2 n-n}\left(-\frac{1}{x}\right)^n={ }^{2 n} C_n x^n(-1)^n x^{-n} \\ & ={ }^{2 n} C_n(-1)^n=(-1)^n \frac{(2 n)!}{n!n!}=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \ldots(2 n-1)(2 n)}{n!n!}(-1)^n \\ & =\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1) \cdot 2 \cdot 4 \cdot 6 \ldots(2 n)}{12 \cdot 3 \cdot \ldots n(n!)}(-1)^n \\ & =\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1) \cdot 2^n(1 \cdot 2 \cdot 3 \ldots n)(-1)^n}{(1 \cdot 2 \cdot 3 \ldots n)(n!)} \\ & =\frac{[1 \cdot 3 \cdot 5 \ldots(2 n-1)]}{n!}(-2)^n \quad \text{Hence proved.} \end{aligned}$$

14
Subjective

Find $n$ in the Binomial $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^n$, if the ratio of 7 th term from the beginning to the 7 th term from the end is $\frac{1}{6}$.

Explanation

Here, the Binomial expansion is $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^n$.

Now, 7 thterm from beginning $T_7=T_{6+1}={ }^n C_6(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^6\quad \text{... (i)}$

and 7 th term from end i.e., $T_7$ from the beginning of $\left(\frac{1}{\sqrt[3]{3}}+\sqrt[3]{2}\right)^n$

i.e., $$T_7={ }^n C_6\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^6\quad \text{.... (ii)}$$

Given that, $\frac{{ }^n C_6(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^6}{{ }^n C_6\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}(\sqrt[3]{2})^6}=\frac{1}{6} \Rightarrow \frac{2^{\frac{n-6}{3}} \cdot 3^{-6 / 3}}{3^{-\left(\frac{n-6}{3}\right)} \cdot 2^{6 / 3}}=\frac{1}{6}$

$\Rightarrow\left(2^{\frac{n-6}{3}} \cdot 2^{\frac{-6}{3}}\right)\left(3^{\frac{-6}{3}} \cdot 3^{\frac{(n-6)}{3}}\right)=6^{-1}$

$\begin{array}{rlrl}\Rightarrow & \left(2^{\frac{n-6}{3}-\frac{6}{3}}\right) \cdot\left(3^{\frac{n-6}{3}-\frac{6}{3}}\right) & =6^{-1} \Rightarrow(2 \cdot 3)^{\frac{n}{3}-4}=6^{-1} \\ \Rightarrow & \frac{n}{3}-4 & =-1 \Rightarrow \frac{n}{3}=3 \\ \therefore \quad n & =9\end{array}$