Find the coefficient of $\frac{1}{x^{17}}$ in the expansion of $\left(x^4-\frac{1}{x^3}\right)^{15}$.
Given expansion is $\left(x^4-\frac{1}{x^3}\right)^{15}$.
Let the term $T_{r+1}$ contains the coefficient of $\frac{1}{x^{17}}$ i.e., $x^{-17}$.
$$\begin{aligned} \therefore \quad T_{r+1} & ={ }^{15} C_r\left(x^4\right)^{15-r}\left(-\frac{1}{x^3}\right)^r \\ & ={ }^{15} C_r x^{60-4 r}(-1)^r x^{-3 r} \\ & ={ }^{15} C_r x^{60-7 r}(-1)^r \end{aligned}$$
For the coefficient $x^{-17}$,
$$\begin{aligned} & 60-7 r=-17 \\ & \begin{array}{lrl} \Rightarrow & 7 r & =77 \Rightarrow r=11 \\ \Rightarrow & T_{11+1} & ={ }^{15} C_{11} x^{60-77}(-1)^{11} \end{array} \\ & \therefore \quad \text { Coefficient of } x^{-17}=\frac{-15 \times 14 \times 13 \times 12 \times 11!}{11!\times 4 \times 3 \times 2 \times 1} \\ & =-15 \times 7 \times 13=-1365 \end{aligned}$$
Find the sixth term of the expansion $\left(y^{1 / 2}+x^{1 / 3}\right)^n$, if the Binomial coefficient of the third term from the end is 45.
Given expansion is $\left(y^{1 / 2}+x^{1 / 3}\right)^n$.
The sixth term of this expansion is
$$T_6=T_{5+1}={ }^n C_5\left(y^{1 / 2}\right)^{n-5}\left(x^{1 / 3}\right)^5\quad \text{... (i)}$$
Now, given that the Binomial coefficient of the third term from the end is 45 .
We know that, Binomial coefficient of third term from the end = Binomial coefficient of third term from the begining $={ }^n \mathrm{C}_2$
$$\begin{aligned} \because \quad & { }^n C_2 =45 \\ \Rightarrow \quad & \frac{n(n-1)(n-2)!}{2!(n-2)!} =45 \\ \Rightarrow \quad & n(n-1) =90 \\ \Rightarrow \quad & n^2-n-90 =0 \\ \Rightarrow \quad & n^2-10 n+9 n-90 =0 \\ \Rightarrow \quad & n(n-10)+9(n-10) =0 \\ \Rightarrow \quad & (n-10)(n+9) =0 \\ \Rightarrow \quad & (n+9) =0 \text { or }(n-10)=0 \\ \therefore \quad & n =10\quad [\because n \neq-9] \end{aligned}$$
From Eq. (i),
$$T_6={ }^{10} C_5 y^{5 / 2} x^{5 / 3}=252 y^{5 / 2} \cdot x^{5 / 3}$$
Find the value of $r$, if the coefficients of $(2 r+4)$ th and $(r-2)$ th terms in the expansion of $(1+x)^{18}$ are equal.
Given expansion is $(1+x)^{18}$.
Now, $(2 r+4)$ th term i.e., $T_{2 r+3+1}$.
$$\begin{aligned} \therefore \quad T_{2 r+3+1} & ={ }^{18} C_{2 r+3}(1)^{18-2 r-3}(x)^{2 r+3} \\ & ={ }^{18} C_{2 r+3} x^{2 r+3} \end{aligned}$$
Now, $(r-2)$ th term i.e., $T_{r-3+1}$.
$$\begin{array}{l} \therefore & T_{r-3+1} ={ }^{18} C_{r-3} x^{r-3} \\ \text { As, } & { }^{18} C_{2 r+3} ={ }^{18} C_{r-3} \quad \left[\because{ }^n C_x={ }^n C_y \Rightarrow x+y=n\right]\\ \Rightarrow & 2 r+3+r-3 =18 \\ \Rightarrow & 3 r =18 \\ \therefore & r =6 \end{array}$$
If the coefficient of second, third and fourth terms in the expansion of $(1+x)^{2n}$ are in A.P, then show that $2n^2-9n+7=0$.
Given expansion is $(1+x)^{2 n}$.
Now,
$$\begin{aligned} & \text { coefficient of } 2 \text { nd term }={ }^{2 n} \mathrm{C}_1 \\ & \text { Coefficient of 3rd term }={ }^{2 n} \mathrm{C}_2 \\ & \text { Coefficient of 4th term }={ }^{2 n} C_3 \end{aligned}$$
Given that, ${ }^{2 n} C_1,{ }^{2 n} C_2$ and ${ }^{2 n} C_3$ are in AP.
$$\begin{aligned} & \text { Then, } & 2^{2{ }^{2 n} C_2} & ={ }^{2 n} C_1+{ }^{2 n} C_3 \\ \Rightarrow & & 2\left[\frac{2 n(2 n-1)(2 n-2)!}{2 \times 1 \times(2 n-2)!}\right] & =\frac{2 n(2 n-1)!}{(2 n-1)!}+\frac{2 n(2 n-1)(2 n-2)(2 n-3)!}{3!(2 n-3)!} \\ \Rightarrow & & n(2 n-1) & =n+\frac{n(2 n-1)(2 n-2)}{6} \\ \Rightarrow & & n(12 n-6) & =n\left(6+4 n^2-4 n-2 n+2\right) \\ \Rightarrow & & 12 n-6 & =\left(4 n^2-6 n+8\right) \\ \Rightarrow & & 6(2 n-1) & =2\left(2 n^2-3 n+4\right) \\ \Rightarrow & & 3(2 n-1) & =2 n^2-3 n+4 \\ \Rightarrow & & 2 n^2-3 n+4-6 n+3 & =0 \\ \Rightarrow & & 2 n^2-9 n+7 & =0 \end{aligned}$$
Find the coefficient of $x^4$ in the expansion of $\left(1+x+x^2+x^3\right)^{11}$.
Given, expansion
$$\begin{aligned} & =\left(1+x+x^2+x^3\right)^{11}=\left[(1+x)+x^2(1+x)\right]^{11} \\ & =\left[(1+x)\left(1+x^2\right)\right]^{11}=(1+x)^{11} \cdot\left(1+x^2\right)^{11} \end{aligned}$$
Now, above expansion becomes
$$\begin{aligned} & =\left({ }^{11} C_0+{ }^{11} C_1 x+{ }^{11} C_2 x^2+{ }^{11} C_3 x^3+{ }^{11} C_4 x^4+\ldots\right)\left({ }^{11} C_0+{ }^{11} C_1 x^2+{ }^{11} C_2 x^4+\ldots\right) \\ & =\left(1+11 x+55 x^2+165 x^3+330 x^4+\ldots\right)\left(1+11 x^2+55 x^4+\ldots\right) \end{aligned}$$
$\therefore$ Coefficient of $x^4=55+605+330=990$