ExamGOAL
Books
17
Subjective

Find the term independent of $x$ in the expansion of

$$\left(1+x+2 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$$

Explanation

Given expansion is $\left(1+x+2 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$

Now, consider $\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$

$$\begin{aligned} T_{r+1} & ={ }^9 C_r\left(\frac{3}{2} x^2\right)^{9-r}\left(-\frac{1}{3 x}\right)^r \\ & ={ }^9 C_r\left(\frac{3}{2}\right)^{9-r} x^{18-2 r}\left(-\frac{1}{3}\right)^r x^{-r}={ }^9 C_r\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^r x^{18-3 r} \end{aligned}$$

Hence, the general term in the expansion of $\left(1+x+2 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$

$$={ }^9 C_r\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^r x^{18-3 r}+{ }^9 C_r\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^r x^{19-3 r}+2 \cdot{ }^9 C_r\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^r x^{21-3 r}$$

For term independent of $x$, putting $18-3 r=0,19-3 r=0$ and $21-3 r=0$, we get

$$r=6, r=19 / 3, r=7$$

Since, the possible value of $r$ are 6 and 7.

Hence, second term is not independent of $x$.

$$\begin{aligned} & =\frac{9 \times 8 \times 7 \times 6!}{6!\times 3 \times 2} \cdot \frac{3^3}{2^3} \cdot \frac{1}{3^6}-2 \cdot \frac{9 \times 8 \times 7!}{7!\times 2 \times 1} \cdot \frac{3^2}{2^2} \cdot \frac{1}{3^7} \\ & =\frac{84}{8} \cdot \frac{1}{3^3}-\frac{36}{4} \cdot \frac{2}{3^5}=\frac{7}{18}-\frac{2}{27}=\frac{21-4}{54}=\frac{17}{54} \end{aligned}$$

18
MCQ (Single Correct Answer)

18 The total number of terms in the expansion of $(x+a)^{100}+(x-a)^{100}$ after simplification is

A
50
B
202
C
51
D
None of these
19
MCQ (Single Correct Answer)

If the integers $r>1, n>2$ and coefficients of $(3 r)$ th and $(r+2)$ nd terms in the Binomial expansion of $(1+x)^{2 n}$ are equal, then

A
$n=2 r$
B
$n=3 r$
C
$n=2 r+1$
D
None of these
20
MCQ (Single Correct Answer)

The two successive terms in the expansion of $(1+x)^{24}$ whose coefficients are in the ratio $1:4$ are

A
3rd and 4th
B
4th and 5th
C
5th and 6th
D
6th and 7th
21
MCQ (Single Correct Answer)

The coefficient of $x^n$ in the expansion of $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ are in the ratio

A
$1: 2$
B
$1: 3$
C
$3: 1$
D
$2:1$