Why on dilution the $\Lambda_{\mathrm{m}}$ of $\mathrm{CH}_3 \mathrm{COOH}$ increases drastically, while that of $\mathrm{CH}_3 \mathrm{COONa}$ increases gradually?
In the case of $\mathrm{CH}_3 \mathrm{COOH}$, which is a weak electrolyte, the number of ions increase on dilution due to an increase in degree of dissociation.
$$\mathrm{CH}_3 \mathrm{COOH}+\mathrm{H}_2 \mathrm{O} \rightleftharpoons \mathrm{CH}_3 \mathrm{COO}^{-}+\mathrm{H}_3 \mathrm{O}^{+}$$
In case of strong electrolyte, the number of ions remains the same but the interionic attraction decreases.
Match the terms given in Column I with the units given in Column II.
Column I | Column II | ||
---|---|---|---|
A. | $\wedge_m$ | 1. | S cm$^{-1}$ |
B. | $E_{\text{cell}}$ | 2. | m$^{-1}$ |
C. | $\kappa$ | 3. | S cm$^2$ mol$^{-1}$ |
D. | $G^*$ | 4. | V |
A. $\rightarrow$ (3) B. $\rightarrow$ (4) C. $\rightarrow$ (1) D. $\rightarrow(2)$
Column I | Column II | ||
---|---|---|---|
A. | $\wedge_m$ | 1. | S cm$^2$ mol$^{-1}$ |
B. | $E_{\text{cell}}$ | 2. | V |
C. | $\kappa$ (conductivity) | 3. | S cm$^{-1}$ |
D. | $G^*=\frac{l}{a}$ | 4. | m$^{-1}$ |
Match the terms given in Column I with the items given in Column II.
Column I | Column II | ||
---|---|---|---|
A. | $\wedge_m$ | 1. | Intensive property |
B. | $E^s_{\text{cell}}$ | 2. | Depends on number of ions/volume |
C. | $\kappa$ | 3. | Extensive property |
D. | $\Delta_r G_{\text{cell}}$ | 4. | Increases with dilution |
A. $\rightarrow$ (4) B. $\rightarrow$ (1) C. $\rightarrow$ (2) D. $\rightarrow$ (3)
A. $\wedge_m$ (molar conductivity) is the conductivity due to number of ions furnished by one mole of electrolyte. As dilution increases number of ions present in the solution increases hence molar conductivity increases.
B. $E_{\text {cell }}^{\circ}$ of any atom/ion does not depend upon number of atom/ion, hence $E_{\text {cell }}^{\circ}$ of any atom/ion is an intensive properties.
C. $\kappa$ represents specific conductivity which depends upon number of ions present in per unit volume.
D. $\Delta_r G_{\text {cell }}$ is an extensive property as it depends upon number of particles(species).
Match the items of Column I and Column II.
Column I | Column II | ||
---|---|---|---|
A. | Lead storage battery | 1. | Maximum efficiency |
B. | Mercury cell | 2. | Prevented by galvanisation |
C. | Fuel cell | 3. | Gives steady potential |
D. | Rusting | 4. | Pb is anode, PbO$_2$ is cathode |
A. $\rightarrow(4)$ B. $\rightarrow$ (3) C. $\rightarrow$ (1) D. $\rightarrow$ (2)
A. Chemical reaction occurring on lead storage battery can be represented as
At anode $\mathrm{Pb}(\mathrm{s})+\mathrm{SO}_4{ }^{2-}(\mathrm{aq}) \longrightarrow \mathrm{PbSO}_4(\mathrm{~s})+2 e^{-}$
At cathode $\mathrm{PbO}_2(\mathrm{~s})+\mathrm{SO}_4^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq}) \xrightarrow{+2 e^{-}} 2 \mathrm{PbSO}_4(\mathrm{~s})+2 \mathrm{H}_2 \mathrm{O}(l)$
Thus, Pb is anode and $\mathrm{PbO}_2$ is cathode.
B. Mercury cell does not include ions during their function hence produce steady current.
C. Fuel cell has maximum efficiency as they produce energy due to combustion reaction of fuel.
D. Rusting is prevented by corrosion.
Match the items of Column I and Column II.
Column I | Column II | ||
---|---|---|---|
A. | $\kappa$ | 1. | $I \times t$ |
B. | $\wedge_m$ | 2. | $\wedge_m / \wedge^o_m$ |
C. | $\alpha$ | 3. | $\frac{\kappa}{C}$ |
D. | $Q$ | 4. | $\frac{G^*}{R}$ |
A. $\rightarrow(4)$ B. $\rightarrow$ (3) C. $\rightarrow(2)$ D. $\rightarrow$ (1)
A. Conductivity $(\kappa)=\frac{G^*}{R}$
B. Molar conductivity $\left(\wedge_m\right)=\frac{\kappa}{C}$
C. Degree of dissociation $(\alpha)=\frac{\wedge_m}{\wedge_m^{\circ}}$
D. Charge $Q=I \times t$
where, $Q$ is the quantity of charge in coulomb when $I$ ampere of current is passed through an electrolyte for $t$ second.