What is the minimum energy that must be given to a H -atom in ground state so that it can emit an $H_\gamma$ line in Balmer series? If the angular momentum of the system is conserved, what would be the angular momentum of such $H_\gamma$ photon?
$H_\gamma$ in Balmer series corresponds to transition $n=5$ to $n=2$. So, the electron in ground state i.e., from $n=1$ must first be placed in state $n=5$.
Energy required for the transition from $n=2$ to $n=5$ is given by
$$=E_1-E_5=13.6-0.54=13.06 \mathrm{eV}$$
Since, angular momentum is conserved, angular momentum coresponding to Hg photon = change in angular momentum of electron
$$\begin{aligned} & =L_5-L_2=5 h-2 h=3 h=3 \times 1.06 \times 10^{-34} \\ & =3.18 \times 10^{-34} \mathrm{~kg}-\mathrm{m}^2 / \mathrm{s} \end{aligned}$$
The first four spectral in the Lyman series of a H-atom are $\lambda=1218\mathop A\limits^o$, $1028\mathop A\limits^o$ and $951.4\mathop A\limits^o$. If instead of Hydrogen, we consider deuterium, calculate the shift in the wavelength of these lines.
The total energy of the electron in the stationary states of the hydrogen atom is given by
$$E_n=-\frac{m e^4}{8 n^2 \varepsilon_0^2 h^2}$$
where signs are as usual and the $m$ that occurs in the Bohr formula is the reduced mass of electron and proton in hydrogen atom.
$$\begin{aligned} \text{By Bohr's model,}\quad h v_{i f} & =E_{n_j}-E_{n_f} \\ \text{On simplifying,}\quad v_{i f} & =\frac{m e^4}{8 \varepsilon_0^2 h^3}\left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right) \end{aligned}$$
$$\begin{aligned} \text{Since,}\quad\lambda & \propto \frac{1}{\propto} \\ \text{Thus,}\quad\lambda_{i f} & \propto \frac{1}{\propto}\quad\text{.... (i)} \end{aligned}$$
where $\propto$ is the reduced mass. (here, $\propto$ is used in place of $m$ )
Reduced mass for
$$H=\alpha_H=\frac{m_e}{1+\frac{m_e}{M}} ; m_e\left(1-\frac{m_e}{M}\right)$$
$$\begin{aligned} &\text { Reduced mass for }\\ &\begin{aligned} D & =\alpha_D ; m_e\left(1-\frac{m_e}{2 M}\right) \\ & =m_e\left(1-\frac{m_e}{2 M}\right)\left(1+\frac{m_e}{2 M}\right) \end{aligned} \end{aligned}$$
If for hydrogen deuterium, the wavelength is $\frac{\lambda_H}{\lambda_D}$
$$\begin{aligned} & \frac{\lambda_D}{\lambda_H}=\frac{\alpha_H}{\lambda_D} \simeq\left(1+\frac{m_e}{2 M}\right)^{-1} \simeq\left(1-\frac{1}{2 \times 1840}\right) \quad \text{[From Eq. (i)]}\\ & \lambda_D=\lambda_H \times(0.99973) \end{aligned}$$
On substituting the values, we have Thus, lines are $1217.7 \mathop A\limits^o, 1027.7 \mathop A\limits^o, 974.04 \mathop A\limits^o, 951.143 \mathop A\limits^o$.
Deutrium was discovered in 1932 by Harold Urey by measuring the small change in wavelength for a particular transition in ${ }^1 \mathrm{H}$ and ${ }^2 \mathrm{H}$. This is because, the wavelength of transition depend to a certain extent on the nuclear mass. If nuclear motion is taken into account, then the electrons and nucleus revolve around their common centre of mass.
Such a system is equivalent to a single particle with a reduced mass $\alpha$, revolving around the nucleus at a distance equal to the electron-nucleus separation. Here $\propto=m_e M /\left(m_e+M\right)$, where $M$ is the nuclear mass and $m_e$ is the electronic mass. Estimate the percentage difference in wavelength for the 1st line of the Lyman series in ${ }^1 \mathrm{H}$ and ${ }^2 \mathrm{H}$. (mass of ${ }^1 \mathrm{H}$ nucleus is $1.6725 \times 10^{-27} \mathrm{~kg}$, mass of ${ }^2 \mathrm{H}$ nucleus is $3.3374 \times 10^{-27}$ kg , Mass of electron $\left.=9.109 \times 10^{-31} \mathrm{~kg}.\right)$
The total energy of the electron in the $n$th states of the hydrogen like atom of atomic number $Z$ is given by
$$E_n=-\frac{\alpha Z^2 e^4}{8 \varepsilon_0^2 h^2}\left(\frac{1}{n^2}\right)$$
where signs are as usual and the $\propto$ that occurs in the Bohr formula is the reduced mass of electron and proton.
Let $\alpha_H$ be the reduced mass of hydrogen and $\alpha_D$ that of Deutrium. Then, the frequency of the 1 st Lyman line in hydrogen is $h \nu_H=\frac{\alpha_H e^4}{8 \varepsilon_0^2 h^2}\left(1-\frac{1}{4}\right)=\frac{\alpha_H e^4}{8 \varepsilon_0^2 h^2} \times \frac{3}{4}$
Thus, the wavelength of the transition is $\lambda_H=\frac{3}{4} \frac{\alpha_H e^4}{8 \varepsilon_0^2 h^3 \mathrm{C}}$. The wavelength of the transition for the same line in Deutrium is $\lambda_D=\frac{3}{4} \frac{\alpha_D e^4}{8 \varepsilon_0^2 h^3 C}$.
$\therefore$ $\Delta \lambda=\lambda_D-\lambda_H$
$$\begin{aligned} &\text { Hence, the percentage difference is }\\ &\begin{aligned} 100 \times \frac{\Delta \lambda}{\lambda_H} & =\frac{\lambda_D-\lambda_H}{\lambda_H} \times 100=\frac{\alpha_D-\alpha_H}{\alpha_H} \times 100 \\ & =\frac{\frac{m_e M_D}{\left(m_e+M_D\right)}-\frac{m_e M_H}{\left(m_e-M_H\right)}}{\frac{m_e M_H}{\left(m_e+M_H\right.}} \times 100 \\ & =\left[\left(\frac{m_e+M_H}{m_e+M_D}\right) \frac{M_D}{M_H}-1\right] \times 100 \end{aligned} \end{aligned}$$
Since, $m_e \ll M_H \ll M_D$
$$\begin{aligned} \frac{\Delta \lambda}{\lambda_H} \times 100 & =\left[\frac{M_H}{M_D} \times \frac{M_D}{M_H}\left(\frac{1+\frac{m_e}{M_H}}{1+\frac{m_e}{M_D}}\right)-1\right] \times 100 \\ & =\left[\left(1+\frac{m_{\mathrm{e}}}{M_H}\right)\left(1+\frac{m_{\mathrm{e}}}{M_D}\right)^{-1}-1\right] \times 100 \simeq\left[1+\frac{m_{\mathrm{e}}}{M_H}-\frac{m_{\mathrm{e}}}{M_D}-1\right] \times 100 \end{aligned}$$
[By binomial theorem, $(1+x)^n=1+n x$ is $\left.|x|<1\right]$
$$\begin{aligned} & \approx m_e\left[\frac{1}{M_H}-\frac{1}{M_D}\right] \times 100 \\ & =9.1 \times 10^{-31}\left[\frac{1}{1.6725 \times 10^{-27}}-\frac{1}{3.3374 \times 10^{-27}}\right] \times 100 \\ & =9.1 \times 10^{-4}[0.5979-0.2996] \times 100 \\ & =2.714 \times 10^{-2} \% \end{aligned}$$
If a proton had a radius $R$ and the charge was uniformly distributed, calculate using Bohr theory, the ground state energy of a H -atom when
(i) $R=0.1 \mathop A\limits^o$ and(ii) $R=10 \mathop A\limits^o$.
The electrostatic force of attraction between positively charged nucleus and negatively charged electrons (Coulombian force) provides necessary centripetal force of revolution.
$$\frac{m v^2}{r_B}=-\frac{e^2}{r_B^2} \cdot \frac{1}{4 \pi \varepsilon_0}$$
By Bohr's postulates in ground state, we have
$$m v r=h$$
On solving,
$$ \begin{array}{ll} \therefore & m \frac{h^2}{m^2 r_B^2} \cdot \frac{1}{r_B}=+\left(\frac{e^2}{4 \pi \varepsilon_0}\right) \frac{1}{r_B^2} \\ \therefore & \frac{h^2}{m} \cdot \frac{4 \pi \varepsilon_0}{e^2}=r_B=0.51 \mathop A\limits^o\quad\text{[This is Bohr's radius]} \end{array}$$
$$\begin{aligned} &\text { The potential energy is given by }\\ &\begin{aligned} -\left(\frac{e^2}{4 \pi r_0}\right) \cdot \frac{1}{r_B} & =-27.2 \mathrm{eV} ; \mathrm{KE}=\frac{m v^2}{2} \\ & =\frac{1}{2} m \cdot \frac{h^2}{m^2 r_B^2}=\frac{h}{2 m r_B^2}=+13.6 \mathrm{eV} \end{aligned} \end{aligned}$$
Now, for an spherical nucleus of radius $R$,
If $R If $R>>r_B$ the electron moves inside the sphere with radius $r_B^{\prime}\left(r_B^{\prime}=\right.$ new Bohr radius). $$\begin{aligned}
&\begin{aligned}
\text{Charge inside}\quad r_B^{\prime 4} & =e\left(\frac{r_B^{\prime 3}}{R^3}\right) \\
\therefore\quad r_B^{\prime} & =\frac{h^2}{m}\left(\frac{4 \pi \varepsilon_0}{e^2}\right) \frac{R^3}{r_B^{\prime 3}} \\
r_B^{\prime 4} & =(0.51 \mathop A\limits^o) \cdot R^3 \quad [R=10 \mathop A\limits^o]\\
& =510(\mathop A\limits^o)^4
\end{aligned}\\
\end{aligned}$$ $$\begin{aligned}
\therefore r_B^{\prime} \simeq(510)^{1 / 4} \mathop A\limits^o & < R \\
\mathrm{KE} & =\frac{1}{2} m v^2=\frac{m}{2} \cdot \frac{h}{m^2 r_B^{\prime 2}}=\frac{h}{2 m} \cdot \frac{1}{r_B^{\prime 2}} \\
& =\left(\frac{h^2}{2 m r_B^2} \cdot\left(\frac{r_B^2}{r_B^{\prime 2}}\right)=(13.6 \mathrm{eV}) \frac{(0.51)^2}{(510)^{1 / 2}}=\frac{3.54}{22.6}=0.16 \mathrm{eV}\right. \\
\mathrm{PE} & =+\left(\frac{e^2}{4 \pi \varepsilon_0}\right) \cdot\left(\frac{r_B^{\prime 2}-3 R^2}{2 R^3}\right) \\
& =+\left(\frac{e^2}{4 \pi \varepsilon_0} \cdot \frac{1}{r_B}\right) \cdot\left(\frac{r_B\left(r_B^{\prime 2}-3 R^2\right)}{R^3}\right)=+(27.2 \mathrm{eV})\left[\frac{0.51(\sqrt{510}-300)}{1000}\right] \\
& =+(27.2 \mathrm{eV}) \cdot \frac{-141}{1000}=-3.83 \mathrm{~eV}
\end{aligned}$$
In the Auger process, an atom makes a transition to a lower state without emitting a photon. The excess energy is transferred to an outer electron which may be ejected by the atom (This is called an Auger, electron). Assuming the nucleus to be massive, calculate the kinetic energy of an $n=4$ Auger electron emitted by Chromium by absorbing the energy from a $n=2$ to $n=1$ transition.
The energy of the $n$th state $E_n=-Z^2 R \frac{1}{n^2}$ where $R$ is the Rydberg constant and $Z=24$.
The energy released in a transition from 2 to 1 is $\Delta E=Z^2 R\left(1-\frac{1}{4}\right)=\frac{3}{4} Z^2 R$.
The energy required to eject a $n=4$ electron is $E_4=Z^2 R \frac{1}{16}$. Thus, the kinetic energy of the Auger electron is
$$\begin{aligned} \mathrm{KE} & =Z^2 R\left(\frac{3}{4}-\frac{1}{16}\right)=\frac{1}{16} Z^2 R \\ & =\frac{11}{16} \times 24 \times 24 \times 13.6 \mathrm{~eV} \\ & =5385.6 \mathrm{~eV} \end{aligned}$$