ExamGOAL
Books
31
Subjective

(a) Consider circuit in figure. How much energy is absorbed by electrons from the initial state of no current (Ignore thermal motion) to the state of drift velocity ?

(b) Electrons give up energy at the rate of $R I^2$ per second to the thermal energy. What time scale would number associate with energy in problem (a)? $n=$ number of electron/volume $=10^{29} / \mathrm{m}^3$. Length of circuit $=10 \mathrm{~cm}$, cross-section $=A=(1 \mathrm{~mm})^2$.

Explanation

(a) By Ohm's law, current $I$ is given by

$$\begin{aligned} & I=6 \mathrm{~V} / 6 \Omega=1 \mathrm{~A} \\ \text{But,}\quad & I=n e t ~ A v_d \text { or } v_d=\frac{i}{n e A} \end{aligned}$$

On substituting the values

For, $$\quad n=\text { number of electron/volume }=10^{29} / \mathrm{m}^3$$

$$\begin{aligned} \text { length of circuit } & =10 \mathrm{~cm}, \text { cross-section }=A=(1 \mathrm{~mm})^2 \\ v_d & =\frac{1}{10^{29} \times 1.6 \times 10^{-19} \times 10^{-6}} \\ & =\frac{1}{1.6} \times 10^{-4} \mathrm{~m} / \mathrm{s} \end{aligned}$$

Therefore, the energy absorbed in the form of KE is given by

$$\begin{aligned} \mathrm{KE} & =\frac{1}{2} m_e v_d^2 \times n A I \\ & =\frac{1}{2} \times 9.1 \times 10^{31} \times \frac{1}{2.56} \times 10^{20} \times 10^8 \times 10^6 \times 10^1 \\ & =2 \times 10^{-17} \mathrm{~J} \end{aligned}$$

(b) Power loss is given by $P=I^2 R=6 \times 1^2=6 \mathrm{~W}=6 \mathrm{~J} / \mathrm{s}$

Since, $$P=\frac{E}{t}$$

Therefore, $$E=P \times t$$

or $$t=\frac{E}{P}=\frac{2 \times 10^{-17}}{6} \approx 10^{-17} \mathrm{~s}$$