Suppose there is a circuit consisting of only resistances and batteries. Suppose one is to double (or increase it to $n$-times) all voltages and all resistances. Show that currents are unaltered. Do this for circuit of Examples 3,7 in the NCERT Text Book for Class XII.
Let the effective internal resistance of the battery is $R_{\text {eff }}$, the effective external resistance $R$ and the effective voltage of the battery is $V_{\text {eff }}$.
Applying Ohm's law,
Then current through $R$ is given by
$$I=\frac{V_{\text {eff }}}{R_{\text {eff }}+R}$$
If all the resistances and the effective voltage are increased $n$-times, then we have
$$\begin{aligned} V_{\text {eff }}^{\text {new }} & =n V_{\text {eff }}, R_{\text {eff }}^{\text {new }}=n R_{\text {eff }} \\ \text{and}\quad R^{\text {new }} & =n R \end{aligned}$$
Then, the new current is given by
$$I^{\prime}=\frac{n V_{\text {eff }}}{n R_{\text {eff }}+n R}=\frac{n\left(V_{\text {eff }}\right)}{n\left(R_{\text {eff }}+R\right)}=\frac{\left(V_{\text {eff }}\right)}{\left(R_{\text {eff }}+R\right)}=I$$
Thus, current remains the same.
Two cells of voltage 10 V and 2 V and $10 \Omega$ internal resistances $10 \Omega$ and $5 \Omega$ respectively, are connected in parallel with the positive end of 10 V battery connected to negative pole of 2 V battery (figure). Find the effective voltage and effective resistance of the combination.
Applying Kirchhoff's junction rule, $\quad I_1=I+I_2$
Applying Kirchhoff's II law / loop rule applied in outer loop containing 10V cell and resistance $R$, we have
$$10=I R+10 I_1\quad\text{.... (i)}$$
Applying Kirchhoff II law / loop rule applied in outer loop containing 2 V cell and resistance $R$, we have
$$\begin{aligned} 2 & =5 I_2-R I=5\left(I_1-I\right)-R I \\ \text{or}\quad 4 & =10 I_1-10 I-2 R I\quad \text{... (ii)} \end{aligned}$$
$$\begin{aligned} &\text { Solving Eqs. (i) and (ii), gives }\\ &\begin{aligned} & \Rightarrow \quad 6=3 R I+10 I \\ & 2=I\left(R+\frac{10}{3}\right) \end{aligned} \end{aligned}$$
Also, the external resistance is $R$. The Ohm's law states that
$$V=I\left(R+R_{\text {eff }}\right)$$
On comparing, we have $V=2 V$ and effective internal resistance
$$\left(R_{\text {eff }}\right)=\left(\frac{10}{3}\right) \Omega$$
Since, the effective internal resistance $\left(R_{\text {eff }}\right)$ of two cells is $\left(\frac{10}{3}\right) \Omega$, being the parallel combination of $5 \Omega$ and $10 \Omega$. The equivalent circuit is given below
A room has $A C$ run for 5 a day at a voltage of 220 V . The wiring of the room consists of Cu of 1 mm radius and a length of 10 m . Power consumption per day is 10 commercial units. What fraction of it goes in the joule heating in wires? What would happen if the wiring is made of aluminium of the same dimensions?
$$\left[\rho_{\mathrm{Cu}}=11.7 \times 10^{-8} \Omega \mathrm{~m}, \rho_{\mathrm{Al}}=2.7 \times 10^{-8} \Omega \mathrm{~m}\right]$$
Power consumption in a day i.e., in $5=10$ units
Or power consumption per hour $=2$ units
Or power consumption $=2$ units $=2 \mathrm{~kW}=2000 \mathrm{~J} / \mathrm{s}$
Also, we know that power consumption in resistor,
$$\begin{array}{rlrl} P =V \times l \\ \Rightarrow \quad 2000 \mathrm{~W} & =220 \mathrm{~V} \times l \text { or } l \approx 9 \mathrm{~A} \end{array}$$
Now, the resistance of wire is given by $R=\rho \frac{l}{A}$ where, $A$ is cross-sectional area of conductor.
Power consumption in first current carrying wire is given by
$$\begin{aligned} P & =l^2 R \\ \rho \frac{l}{A} l^2 & =1.7 \times 10^{-8} \times \frac{10}{\pi \times 10^{-6}} \times 81 \mathrm{~J} / \mathrm{s} \approx 4 \mathrm{~J} / \mathrm{s} \end{aligned}$$
The fractional loss due to the joule heating in first wire $=\frac{4}{2000} \times 100=0.2 \%$
Power loss in Al wire $=4 \frac{\rho_{\mathrm{Al}}}{\rho_{\mathrm{Cu}}}=1.6 \times 4=6.4 \mathrm{~J} / \mathrm{s}$
The fractional loss due to the joule heating in second wire $=\frac{6.4}{2000} \times 100=0.32 \%$
In an experiment with a potentiometer, $V_B=10 \mathrm{~V} . R$ is adjusted to be $50 \Omega$ (figure). A student wanting to measure voltage $E_1$ of a battery (approx. 8V) finds no null point possible. He then diminishes R to $10 \Omega$ and is able to locate the null point on the last (4th) segment of the potentiometer. Find the resistance of the potentiometer wire and potential drop per unit length across the wire in the second case.
Let $R^{\prime}$ be the resistance of the potentiometer wire.
Effective resistance of potentiometer and variable resistor $(R=50 \Omega)$ is given by $=50 \Omega+R^{\prime}$
Effective voltage applied across potentiometer $=10 \mathrm{~V}$.
The current through the main circuit,
$$I=\frac{V}{50 \Omega+R}=\frac{10}{50 \Omega+R}$$
Potential difference across wire of potentiometer,
$$I R^{\prime}=\frac{10 R^{\prime}}{50 \Omega+R}$$
Since with $50 \Omega$ resistor, null point is not obtained it's possible only when
$$\begin{aligned} \frac{10 \times R^{\prime}}{50+R} & <8 \\ 10 R^{\prime} & <400+8 R^{\prime} \\ \Rightarrow\quad 2 R^{\prime}<400 \text { or } R^{\prime} & <200 \Omega . \end{aligned}$$
Similarly with $10 \Omega$ resistor, null point is obtained its possible only when
$$\frac{10 \times R^{\prime}}{10+R^{\prime}}>8$$
$$\begin{array}{llr} \Rightarrow & 2 R^{\prime}> 80 \\ \Rightarrow & R^{\prime}> 40 \\ & \frac{10 \times \frac{3}{4} R^{\prime}}{10+R^{\prime}} <8 \\ \Rightarrow & 7.5 R^{\prime} < 80+8 R^{\prime} \\ \Rightarrow & R^{\prime} > 160 \\ & 160 < R^{\prime}<200 . \end{array}$$
Any $R^{\prime}$ between $160 \Omega$ and $200 \Omega$ wlll achieve.
Since, the null point on the last (4th) segment of the potentiometer, therefore potential drop across 400 cm of wire $>8 \mathrm{~V}$.
This imply that potential gradient
$$\begin{aligned} k \times 400 \mathrm{~cm} & >8 \mathrm{~V} \\ \text{or}\quad k \times 4 \mathrm{~m} & >8 \mathrm{~V} \\ k & >2 \mathrm{~V} / \mathrm{m} \end{aligned}$$
Similarly, potential drop across 300 cm wire $<8 \mathrm{~V}$.
$$\begin{aligned} k \times 300 \mathrm{~cm} & <8 \mathrm{~V} \\ \text{or}\quad \mathrm{k} \times 3 \mathrm{~m}<8 \mathrm{~V}, k & <2 \frac{2}{3} \mathrm{~V} / \mathrm{m} \\ \text{Thus,}\quad 2 \frac{2}{3} \mathrm{~V} / \mathrm{m} & >k>2 \mathrm{~V} / \mathrm{m} \end{aligned}$$
(a) Consider circuit in figure. How much energy is absorbed by electrons from the initial state of no current (Ignore thermal motion) to the state of drift velocity ?
(b) Electrons give up energy at the rate of $R I^2$ per second to the thermal energy. What time scale would number associate with energy in problem (a)? $n=$ number of electron/volume $=10^{29} / \mathrm{m}^3$. Length of circuit $=10 \mathrm{~cm}$, cross-section $=A=(1 \mathrm{~mm})^2$.
(a) By Ohm's law, current $I$ is given by
$$\begin{aligned} & I=6 \mathrm{~V} / 6 \Omega=1 \mathrm{~A} \\ \text{But,}\quad & I=n e t ~ A v_d \text { or } v_d=\frac{i}{n e A} \end{aligned}$$
On substituting the values
For, $$\quad n=\text { number of electron/volume }=10^{29} / \mathrm{m}^3$$
$$\begin{aligned} \text { length of circuit } & =10 \mathrm{~cm}, \text { cross-section }=A=(1 \mathrm{~mm})^2 \\ v_d & =\frac{1}{10^{29} \times 1.6 \times 10^{-19} \times 10^{-6}} \\ & =\frac{1}{1.6} \times 10^{-4} \mathrm{~m} / \mathrm{s} \end{aligned}$$
Therefore, the energy absorbed in the form of KE is given by
$$\begin{aligned} \mathrm{KE} & =\frac{1}{2} m_e v_d^2 \times n A I \\ & =\frac{1}{2} \times 9.1 \times 10^{31} \times \frac{1}{2.56} \times 10^{20} \times 10^8 \times 10^6 \times 10^1 \\ & =2 \times 10^{-17} \mathrm{~J} \end{aligned}$$
(b) Power loss is given by $P=I^2 R=6 \times 1^2=6 \mathrm{~W}=6 \mathrm{~J} / \mathrm{s}$
Since, $$P=\frac{E}{t}$$
Therefore, $$E=P \times t$$
or $$t=\frac{E}{P}=\frac{2 \times 10^{-17}}{6} \approx 10^{-17} \mathrm{~s}$$