A racing car travels on a track (without banking) $$A B C D E F A . A B C$$ is a circular arc of radius $$2 R.CD$$ and $$F A$$ are straight paths of length $$R$$ and $$D E F$$ is a circular arc of radius $$R=100 \mathrm{~m}$$. The coefficient of friction on the road is $$\mu=0.1$$. The maximum speed of the car is $$50 \mathrm{~ms}^{-1}$$. Find the minimum time for completing one round.
Balancing frictional force for centripetal force $$\frac{m v^2}{r}=f=\mu N=\mu m g$$ where, $$N$$ is normal reaction.
$$\therefore \quad v=\sqrt{\mu r g}\quad$$ (where, $$r$$ is radius of the circular track)
For path ABC $$\quad$$ Path length
$$\begin{aligned} & =\frac{3}{4}(2 \pi 2 R)=3 \pi R=3 \pi \times 100 \\ & =300 \pi \mathrm{m} \end{aligned}$$
$$\begin{aligned} v_1=\sqrt{\mu 2 R g} & =\sqrt{0.1 \times 2 \times 100 \times 10} \\ & =14.14 \mathrm{~m} / \mathrm{s} \\ \therefore \quad t_1 & =\frac{300 \pi}{14.14}=66.6 \mathrm{~s} \end{aligned}$$
$$\begin{aligned} \text { For path } D E F \quad \text { Path length } & =\frac{1}{4}(2 \pi R)=\frac{\pi \times 100}{2}=50 \pi \\ v_2 & =\sqrt{\mu R g}=\sqrt{0.1 \times 100 \times 10}=10 \mathrm{~m} / \mathrm{s} \\ t_2 & =\frac{50 \pi}{10}=5 \pi \mathrm{s}=15.7 \mathrm{~s} \end{aligned}$$
For paths, $$C D$$ and $$F A$$
$$\begin{aligned} \text { Path length } & =R+R=2 R=200 \mathrm{~m} \\ t_3 & =\frac{200}{50}=4.0 \mathrm{~s} \end{aligned}$$
$$\therefore$$ Total time for completing one round
$$t=t_1+t_2+t_3=66.6+15.7+4.0=86.3 \mathrm{~s}$$
The displacement vector of a particle of mass $$m$$ is given by $$\mathbf{r}(t)=\hat{\mathbf{i}} A \cos \omega t+\hat{\mathbf{j}} B \sin \omega t$$.
(a) Show that the trajectory is an ellipse.
(b) Show that $$F=-m \omega^2 \mathbf{r}$$.
(a) Displacement vector of the particle of mass $$m$$ is given by
$$\mathbf{r}(t)=\hat{\mathbf{i}} A \cos \omega t+\hat{\mathbf{j}} B \sin \omega t$$
$$\therefore \quad$$ Displacement along $$x$$-axis is,
$$\begin{aligned} x & =A \cos \omega t \\ \text{or}\quad\frac{x}{A} & =\cos \omega t \quad \text{... (i)} \end{aligned}$$
Displacement along $$y$$-axis is,
and $$\quad y=B \sin \omega t$$
or $$\quad \frac{y}{B}=\sin \omega t$$
Squaring and then adding Eqs. (i) and (ii), we get
$$\frac{x^2}{A^2}+\frac{y^2}{B^2}=\cos ^2 \omega t+\sin ^2 \omega t=1$$
This is an equation of ellipse.
Therefore, trajectory of the particle is an ellipse.
$$\begin{aligned} &\text { (b) Velocity of the particle }\\ &\begin{aligned} \mathbf{v} & =\frac{d \mathbf{r}}{d t}=\hat{\mathbf{i}} \frac{d}{d t}(A \cos \omega t)+\hat{\mathbf{j}} \frac{d}{d t}(B \sin \omega t) \\ & =\hat{\mathbf{i}}[A(-\sin \omega t) \cdot \omega]+\hat{\mathbf{j}}[B(\cos \omega t) \cdot \omega] \\ & =-\hat{\mathbf{i}} A \omega \sin \omega t+\hat{\mathbf{j}} B \omega \cos \omega t \end{aligned} \end{aligned}$$
$$\text { Acceleration of the particle }(\mathbf{a})=\frac{d \mathbf{v}}{d t}$$
$$\begin{aligned} \text{or}\quad\mathbf{a} & =-\hat{\mathbf{i}} A \omega \frac{d}{d}(\sin \omega t)+\hat{\mathbf{j}} B \omega \frac{d}{d t}(\cos \omega t) \\ & =-\hat{\mathbf{i}} A \omega[\cos \omega t] \cdot \omega+\hat{\mathbf{j}} B \omega[-\sin \omega t] \cdot \omega \\ & =-\hat{\mathbf{i}} A \omega^2 \cos \omega t-\hat{\mathbf{j}} B \omega^2 \sin \omega t \\ & =-\omega^2[\hat{\mathbf{i}} A \cos \omega t+\hat{\mathbf{j}} B \sin \omega t] \\ & =-\omega^2 \mathbf{r} \end{aligned}$$
$$\begin{aligned} &\therefore \text { Force acting on the particle, }\\ &F=m \mathbf{a}=-\mathbf{m} \omega^2 \mathbf{r}, \end{aligned}$$
Hence proved.
A cricket bowler releases the ball in two different ways
(a) giving it only horizontal velocity, and
(b) giving it horizontal velocity and a small downward velocity.
The speed $$v_s$$ at the time of release is the same. Both are released at a height $$H$$ from the ground. Which one will have greater speed when the ball hits the ground? Neglect air resistance.
(a) When ball is given only horizontal velocity Horizontal velocity at the time of release $$\left(u_x\right)=v_s$$
During projectile motion, horizontal velocity remains unchanged,
$$\begin{aligned} \text{Therefore, } \quad & v_x=u_x=v_s \\ \text{In vertical direction,} \quad & v_y^2=u_y^2+2 g H \\ v_y=\sqrt{2 g H} \quad \left(\because u_y=0\right) \end{aligned}$$
$$\begin{aligned} &\therefore \text { Resultant speed of the ball at bottom, }\\ &\begin{aligned} v & =\sqrt{v_x^2+v_y^2} \\ & =\sqrt{v_s^2+2 g H} \quad \text{... (i)} \end{aligned} \end{aligned}$$
$$\text { (b) When ball is given horizontal velocity and a small downward velocity }$$
Let the ball be given a small downward velocity $$u$$.
$$\begin{aligned} \text{In horizontal direction} \quad & v_x^{\prime}=u_x=v_s \\ \text{In vertical direction } \quad & v_y^{\prime 2}=u^2+2 g H \\ \text{or} \quad & v_y^{\prime}=\sqrt{u^2+2 g H} \end{aligned}$$
$$\therefore$$ Resultant speed of the ball at the bottom
$$v^{\prime}=\sqrt{v_x^{\prime 2}+v_y^{\prime 2}}=\sqrt{v_s^2+u^2+2 g H} \quad \text{... (ii)}$$
From Eqs. (i) and (ii), we get $$\quad v^{\prime}>v$$
There are four forces acting at a point $$P$$ produced by strings as shown in figure. Which is at rest? Find the forces $$\mathbf{F}_1$$ and $$\mathbf{F}_2$$.
Consider the adjacent diagram, in which forces are resolved.
On resolving forces into rectangular components, in equilibrium forces $$\left(F_1+\frac{1}{\sqrt{2}}\right) N$$ are equal to $$\sqrt{2} N$$ and $$\boldsymbol{F}_2$$ is equal to $$\left(\sqrt{2}+\frac{1}{\sqrt{2}}\right) \mathrm{N}$$.
$$\begin{array}{rlrl} \therefore & F_1+\frac{1}{\sqrt{2}} & =\sqrt{2} \\ & & F_1 & =\sqrt{2}-\frac{1}{\sqrt{2}}=\frac{2-1}{\sqrt{2}}=\frac{1}{\sqrt{2}}=0.707 \mathrm{~N} \\ & \text { and } & F_2 & =\sqrt{2}+\frac{1}{\sqrt{2}}=\frac{2+1}{\sqrt{2}} \mathrm{~N}=\frac{3}{\sqrt{2}} \mathrm{~N}=2.121 \mathrm{~N} \end{array}$$
A rectangular box lies on a rough inclined surface. The coefficient of friction between the surface and the box is $$\mu$$. Let the mass of the box be $$m$$.
(a) At what angle of inclination $$\theta$$ of the plane to the horizontal will the box just start to slide down the plane?
(b) What is the force acting on the box down the plane, if the angle of inclination of the plane is increased to $$\alpha>\theta$$ ?
(c) What is the force needed to be applied upwards along the plane to make the box either remain stationary or just move up with uniform speed?
(d) What is the force needed to be applied upwards along the plane to make the box move up the plane with acceleration $$a$$ ?
(a) Consider the adjacent diagram, force of friction on the box will act up the plane.
$$\begin{aligned} &\text { For the box to just starts sliding down } m g\\ &\begin{array}{ll} & \sin \theta=f=\mu N=\mu m g \cos \theta \\ \text { or } \quad & \tan \theta=\mu \Rightarrow \theta=\tan ^{-1}(\mu) \end{array} \end{aligned}$$
(b) When angle of inclination is increased to $$\alpha>\theta$$, then net force acting on the box, down the plane is
$$\begin{aligned} F_1 & =m g \sin \alpha-f=m g \sin \alpha-\mu N \\ & =m g(\sin \alpha-\mu \cos \alpha) . \end{aligned}$$
(c) To keep the box either stationary or just move it up with uniform speed, upward force needed, $$F_2=m g \sin \alpha+f=m g(\sin \alpha+\mu \cos \alpha)$$ (In this case, friction would act down the plane).
(d) If the box is to be moved with an upward acceleration $$a$$, then upward force needed, $$F_3=m g(\sin \alpha+\mu \cos \alpha)+m a$$.