A mass $m$ is placed at $P$ a distance $h$ along the normal through the centre 0 of a thin circular ring of mass $M$ and radius $r$ (figure).
If the mass is moved further away such that $O P$ becomes $2 h$, by what factor the force of gravitation will decrease, if $h=r$ ?
Consider the diagram, in which a system consisting of a ring and a point mass is shown.
Gravitational force acting on an object of mass $m$, placed at point $P$ at a distance $h$ along the normal through the centre of a circular ring of mass $M$ and radius $r$ is given by
$$F=\frac{\text { GMmh }}{\left(r^2+h^2\right)^{3 / 2}}\quad$$ (along PO) ...(i)
$$\begin{aligned} &\text { When mass is displaced upto distance } 2 h \text {, then }\\ &\begin{aligned} F^{\prime} & =\frac{G M m \times 2 h}{\left[r^2+(2 h)^2\right]^{3 / 2}} \quad [\because h=2r]\\ & =\frac{2 G M m h}{\left(r^2+4 h^2\right)^{3 / 2}} \quad \text{... (ii)} \end{aligned} \end{aligned}$$
$\begin{aligned} & \text { When } h=r \text {, then from Eq. (i) } \\ & \qquad \begin{array}{ll}F & =\frac{G M m \times r}{\left(r^2+r^2\right)^{3 / 2}} \Rightarrow F=\frac{G M m}{2 \sqrt{2 r^2}} \\ \text { and } & F^{\prime}=\frac{2 G M m r}{\left(r^2+4 r^2\right)^{3 / 2}}=\frac{2 G M m}{5 \sqrt{5 r^2}} \quad \text { [From Eq. (ii) substituting } h=r \text { ] } \\ \therefore & \frac{F^{\prime}}{F}=\frac{4 \sqrt{2}}{5 \sqrt{5}} \\ \Rightarrow & F^{\prime}=\frac{4 \sqrt{2}}{5 \sqrt{5}} F\end{array}\end{aligned}$
A star like the sun has several bodies moving around it at different distances. Consider that all of them are moving in circular orbits. Let $r$ be the distance of the body from the centre of the star and let its linear velocity be $v$, angular velocity $\omega$, kinetic energy $K$, gravitational potential energy $U$, total energy $E$ and angular momentum $l$. As the radius $r$ of the orbit increases, determine which of the above quantities increase and which ones decrease.
$$\begin{array}{ll} \text { Linear velocity of the body } & v=\sqrt{\frac{G M}{r}} \\ \Rightarrow & v \propto \frac{1}{\sqrt{r}} \end{array}$$
Therefore, when $r$ increases, $v$ decreases.
Angular velocity of the body $\quad \omega=\frac{2 \pi}{T}$
According to Kepler's law of period,
$$T^2 \propto r^3 \Rightarrow T=k r^{3 / 2}$$
where $k$ is a constant
$$\therefore \quad \omega=\frac{2 \pi}{k r^{3 / 2}} \Rightarrow \omega \propto \frac{1}{r^{3 / 2}} \quad\left(\because \omega=\frac{2 \pi}{T}\right)$$
Therefore, when $r$ increases, $\omega$ decreases.
Kinetic energy of the body
$K=\frac{1}{2} m v^2=\frac{1}{2} m \times \frac{G M}{r}=\frac{G M m}{2 r}$
$\therefore \quad K \propto \frac{1}{r}$
Therefore, when $r$ increases, KE decreases. Gravitational potential energy of the body,
$$U=-\frac{G M m}{r} \Rightarrow U \propto-\frac{1}{r}$$
Therefore, when $r$ increases, PE becomes less negative i.e., increases.
Total energy of the body
$$E=\mathrm{KE}+\mathrm{PE}=\frac{\mathrm{GMm}}{2 r}+\left(-\frac{\mathrm{GMm}}{r}\right)=-\frac{\mathrm{GMm}}{2 r}$$
Therefore, when $r$ increases, total energy becomes less negative, i.e., increases.
Angular momentum of the body $L=m v r=m r \sqrt{\frac{G M}{r}}=m \sqrt{G M r}$ $\therefore \quad L \propto \sqrt{r}$
Therefore, when $r$ increases, angular momentum $L$ increases.
Six point masses of mass $m$ each are at the vertices of a regular hexagon of side $l$. Calculate the force on any of the masses.
Consider the diagram below, in which six point masses are placed at six vertices $A, B, C, D, E$ and $F$
$$\begin{aligned} A C & =A G+G C=2 A G \\ & =2 l \cos 30^{\circ}=2 l \sqrt{3} / 2 \\ & =\sqrt{3} l=A E \\ A D & =A H+H J+J D \\ & =l \sin 30^{\circ}+l+l \sin 30^{\circ}=2 l \end{aligned}$$
$$ \text { Force on mass } m \text { at } A \text { due to mass } m \text { at } B \text { is, } f_1=\frac{G m m}{l^2} \text { along } A B \text {. } $$
$$\begin{aligned} &\text { Force on mass } m \text { at } A \text { due to mass } m \text { at } C \text { is, } f_2=\frac{G m \times m}{(\sqrt{3} l)^2}=\frac{G m^2}{3 l^2} \text { along } A C \text {. }\quad [\because A C=\sqrt{3 l}] \end{aligned}$$
Force on mass $m$ at $A$ due to mass $m$ at $D$ is, $f_3=\frac{G m \times m}{(2 l)^2}=\frac{G m^2}{4 l^2}$ along $A D . [\because A D=2 l]$
Force on mass $m$ at $A$ due to mass $m$ at $E$ is, $f_4=\frac{G m \times m}{(\sqrt{3} l)^2}=\frac{G m^2}{3 l^2}$ along $A E$.
Force on mass $m$ at $A$ due to mass $m$ at $F$ is, $f_5=\frac{G m \times m}{l^2}=\frac{G m^2}{l^2}$ along $A F$.
Resultant force due to $f_1$ and $f_5$ is, $F_1=\sqrt{f_1^2+f_5^2+2 f_1 f_5 \cos 120^{\circ}}=\frac{G m^2}{l^2}$ along $A D$. \quad \left[\because \text { Angle between } f_1 \text { and } f_5=120^{\circ}\right]
Resultant force due to $f_2$ and $f_4$ is, $F_2=\sqrt{f_2^2+f_4^2+2 f_2 f_4 \cos 60^{\circ}}$
$$=\frac{\sqrt{3} G m^2}{3 l^2}=\frac{G m^2}{\sqrt{3} l^2} \text { along } A D$$
So, net force along $A D=F_1+F_2+F_3=\frac{G m^2}{l^2}+\frac{G m^2}{\sqrt{3} l^2}+\frac{G m^2}{4 l^2}=\frac{G m^2}{l^2}\left(1+\frac{1}{\sqrt{3}}+\frac{1}{4}\right)$.
A satellite is to be placed in equatorial geostationary orbit around the earth for communication.
(a) Calculate height of such a satellite.
(b) Find out the minimum number of satellites that are needed to cover entire earth, so that atleast one satellite is visible from any point on the equator.
$$\left[M=6 \times 10^{24} \mathrm{~kg}, R=6400 \mathrm{~km}, T=24 \mathrm{~h}, G=6.67 \times 10^{-11} \mathrm{SI} \text { unit }\right]$$
Consider the adjacent diagram
$$\begin{aligned} \text{Given,}\quad\text { mass of the earth } M & =6 \times 10^{24} \mathrm{~kg} \\ \text { Radius of the earth, } R & =6400 \mathrm{~km}=6.4 \times 10^6 \mathrm{~m} \\ \text { Time period } T & =24 \mathrm{~h} \\ & =24 \times 60 \times 60=86400 \mathrm{~s} \\ G & =6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^2 / \mathrm{kg}^2 \end{aligned}$$
$$\begin{aligned} &\text { (a) Time period }\\ &T=2 \pi \sqrt{\frac{(R+h)^3}{\mathrm{GM}}} \quad\left[\because v_0=\sqrt{\frac{\mathrm{G} M}{R+h}} \text { and } T=\frac{2 \pi(R+h)}{v_0}\right] \end{aligned}$$
$$\begin{aligned} \Rightarrow \quad T^2 & =4 \pi^2 \frac{(R+h)^3}{G M} \Rightarrow(R+h)^3=\frac{T^2 G M}{4 \pi^2} \\ \Rightarrow \quad R+h & =\left(\frac{T^2 G M}{4 \pi^2}\right)^{1 / 3} \Rightarrow h=\left(\frac{T^2 G M}{4 \pi^2}\right)^{1 / 3}-R \\ \Rightarrow \quad h & =\left[\frac{(24 \times 60 \times 60)^2 \times 6.67 \times 10^{-11} \times 6 \times 10^{24}}{4 \times(3.14)^2}\right]^{1 / 3}-6.4 \times 10^6 \\ & =4.23 \times 10^7-6.4 \times 10^6 \\ & =(42.3-6.4) \times 10^6 \\ & =35.9 \times 10^6 \mathrm{~m} \\ & =3.59 \times 10^7 \mathrm{~m} \end{aligned}$$
$$\text { (b) If satellite is at height } h \text { from the earth's surface, then according to the diagram. }$$
$$\begin{aligned} \cos \theta & =\frac{R}{R+h}=\frac{1}{\left(1+\frac{h}{R}\right)}=\frac{1}{\left(1+\frac{3.59 \times 10^7}{6.4 \times 10^6}\right)} \\ & =\frac{1}{1+5.61}=\frac{1}{6.61}=0.1513=\cos 81^{\prime} 18^{\prime} \\ \theta & =81^{\prime} 18^{\prime} \\ \therefore \quad 2 \theta & =2 \times\left(81^{\prime} 18^{\prime}\right)=162^{\circ} 36^{\prime} \end{aligned}$$
If $n$ is the number of satellites needed to cover entire the earth, then
$$n=\frac{360^{\circ}}{2 \theta}=\frac{360^{\circ}}{162^{\circ} 36^{\prime}}=2.31$$
$\therefore \quad$ Minimum 3 satellites are required to cover entire the earth.
Earth's orbit is an ellipse with eccentricity 0.0167 . Thus, the earth's distance from the sun and speed as it moves around the sun varies from day-to-day. This means that the length of the solar day is not constant through the year. Assume that the earth's spin axis is normal to its orbital plane and find out the length of the shortest and the longest day. A day should be taken from noon to noon. Does this explain variation of length of the day during the year?
Consider the diagram. Let $m$ be the mass of the earth, $v_p, v_a$ be the velocity of the earth at perigee and apogee respectively. Similarly, $\omega_p$ and $\omega_a$ are corresponding angular velocities.
Angular momentum and areal velocity are constant as the earth orbits the sun.
At perigee, $r_p^2 \omega_p=r_a^2 \omega_a$ at apogee $$\quad$$ .... (i)
If $a$ is the semi-major axis of the earth's orbit, then $r_p=a(1-e)$ and $r_a=a(1+e)\quad \text{... (ii)}$
$$ \begin{array}{ll} \therefore \frac{\omega_p}{\omega_a}=\left(\frac{1+e}{1-e}\right)^2, e=0.0167 & \text { [from Eqs. (i) and (ii)] } \\ \therefore\frac{\omega_p}{\omega_a}=1.0691 & \end{array}$$
Let $\omega$ be angular speed which is geometric mean of $\omega_p$ and $\omega_a$ and corresponds to mean solar day,
$$\begin{array}{ll} \therefore & \left(\frac{\omega_p}{\omega}\right)\left(\frac{\omega}{\omega_a}\right)=1.0691 \\ \therefore & \frac{\omega_p}{\omega}=\frac{\omega}{\omega_a}=1.034 \end{array}$$
If $\omega$ corresponds to $1^{\circ}$ per day (mean angular speed), then $\omega_p=1.034^{\circ}$ per day and $\omega_{\mathrm{a}}=0.967^{\circ}$ per day. Since, $361^{\circ}=24$, mean solar day, we get $361.034^{\circ}$ which corresponds to $24 \mathrm{~h}, 8.14^{\prime \prime}$ ( $8.1^{\prime \prime}$ longer) and $360.967^{\circ}$ corresponds to 23 h 59 min $52^{\prime \prime}$ ( $7.9^{\prime \prime}$ smaller).
This does not explain the actual variation of the length of the day during the year.