If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are unit vectors such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{0}$, then the value of $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}$ is
The projection vector of $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}$ is
If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are three vectors such that $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}=\overrightarrow{0}$ and $|\overrightarrow{\mathbf{a}}|=2$, $|\overrightarrow{\mathbf{b}}|=3$ and $|\overrightarrow{\mathbf{c}}|=5$, then the value of $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}$ is
If $|\overrightarrow{\mathbf{a}}|=4$ and $-3 \leq \lambda \leq 2$, then the range of $|\lambda \overrightarrow{\mathbf{a}}|$ is
The number of vectors of unit length perpendicular to the vectors $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{j}}+\hat{\mathbf{k}}$ is