ExamGOAL
Books
23
MCQ (Single Correct Answer)

Find the value of $\lambda$ such that the vectors $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+\lambda \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ are orthogonal.

A
0
B
1
C
$\frac{3}{2}$
D
$\frac{-5}{2}$
24
MCQ (Single Correct Answer)

The value of $\lambda$ for which the vectors $3 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$ are parallel, is

A
$\frac{2}{3}$
B
$\frac{3}{2}$
C
$\frac{5}{2}$
D
$\frac{2}{5}$
25
MCQ (Single Correct Answer)

The vectors from origin to the points $A$ and $B$ are $\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ respectively, then the area of $\triangle O A B$ is equal to

A
340
B
$\sqrt{25}$
C
$\sqrt{229}$
D
$\frac{1}{2} \sqrt{229}$
26
MCQ (Single Correct Answer)

For any vector $\overrightarrow{\mathbf{a}}$, the value of $(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{i}})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{j}})^2+(\overrightarrow{\mathbf{a}} \times \hat{\mathbf{k}})^2$ is

A
$\overrightarrow{\mathbf{a}}^2$
B
$3 \overrightarrow{\mathbf{a}}^2$
C
$4 \overrightarrow{\mathbf{a}}^2$
D
$2 \overrightarrow{\mathbf{a}}^2$
27
MCQ (Single Correct Answer)

If $|\overrightarrow{\mathbf{a}}|=10,|\overrightarrow{\mathbf{b}}|=2$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=12$, then the value of $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$ is

A
5
B
10
C
14
D
16