ExamGOAL
Books
18
Subjective

If $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{b}}=\hat{\mathbf{j}}-\hat{\mathbf{k}}$, then find a vector $\overrightarrow{\mathbf{c}}$ such that $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}=3$.

Explanation

$$\begin{aligned} \text{Let}\quad & \overrightarrow{\mathbf{c}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}} \\ & \text{Also,}\quad \overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}} \text { and } \overrightarrow{\mathbf{b}}=\hat{\mathbf{j}}-\hat{\mathbf{k}} \end{aligned}$$

For $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{b}}$,

$$\begin{aligned} & \Rightarrow \quad\left|\begin{array}{ccc} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 1 \\ x & y & z \end{array}\right|=\hat{\mathbf{j}}-\hat{\mathbf{k}} \\ & \Rightarrow \quad \hat{\mathbf{i}}(z-y)-\hat{\mathbf{j}}(z-x)+\hat{\mathbf{k}}(y-x)=\hat{\mathbf{j}}-\hat{\mathbf{k}} \end{aligned}$$

$$ \begin{aligned} \therefore \quad & z-y=0 \quad\text{.... (i)}\\ & x-z=1 \quad\text{.... (ii)}\\ & x-y=1\quad\text{.... (iii)} \end{aligned}$$

$$\begin{aligned} \text{Also,}\quad \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}} & =3 \\ (\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}) \cdot(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \mathbf{k}) & =3 \\ \Rightarrow\quad x+y+z & =3\quad \text{.... (iv)} \end{aligned}$$

On adding Eqs. (ii) and (iii), we get

$$2 x-y-z=2\quad\text{.... (v)}$$

$$\begin{aligned} &\text { On solving Eqs. (iv) and (v), we get }\\ &\begin{aligned} x & =\frac{5}{3} \\ \therefore\quad y & =\frac{5}{3}-1=\frac{2}{3} \text { and } z=\frac{2}{3} \\ \text{Now,}\quad \overrightarrow{\mathbf{c}} & =\frac{5}{3} \hat{\mathbf{i}}+\frac{2}{3} \hat{\mathbf{j}}+\frac{2}{3} \hat{\mathbf{k}} \\ & =\frac{1}{3}(5 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \end{aligned} \end{aligned}$$

19
MCQ (Single Correct Answer)

The vector in the direction of the vector $\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ that has magnitude 9 is

A
$\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$
B
$\frac{\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}}{3}$
C
$3(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
D
$9(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
20
MCQ (Single Correct Answer)

The position vector of the point which divides the join of points $2 \overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ in the ratio $3: 1$, is

A
$\frac{3 \vec{a}-2 \vec{b}}{2}$
B
$\frac{7 \vec{a}-8 \vec{b}}{4}$
C
$\frac{3 \overrightarrow{\mathbf{a}}}{4}$
D
$\frac{5 \overrightarrow{\mathbf{a}}}{4}$
21
MCQ (Single Correct Answer)

The vector having initial and terminal points as $(2,5,0)$ and $(-3,7$, 4), respectively is

A
$-\hat{\mathbf{i}}+12 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
B
$5 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$
C
$-5 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$
D
$\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
22
MCQ (Single Correct Answer)

The angle between two vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ with magnitudes $\sqrt{3}$ and 4, respectively and $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=2 \sqrt{3}$ is

A
$\frac{\pi}{6}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{2}$
D
$\frac{5 \pi}{2}$