If $f:[2, \infty) \rightarrow R$ be the function defined by $f(x)=x^2-4 x+5$, then the range of $f$ is
If $f: N \rightarrow R$ be the function defined by $f(x)=\frac{2 x-1}{2}$ and $g: Q \rightarrow R$ be another function defined by $g(x)=x+2$. Then, $(g \circ f) \frac{3}{2}$ is
If $f: R \rightarrow R$ be defined by $f(x)=\left\{\begin{array}{l}2 x: x>3 \\ x^2: 1< x \leq 3 \\ 3 x: x \leq 1\end{array}\right.$ Then, $f(-1)+f(2)+f(4)$ is
If $f: R \rightarrow R$ be given by $f(x)=\tan x$, then $f^{-1}(1)$ is
Let the relation $R$ be defined in $N$ by $a R b$, if $2 a+3 b=30$. Then, $R=$ ..........
$$\begin{aligned} \text{Given that,}\quad 2 a+3 b & =30 \\ 3 b & =30-2 a \\ b & =\frac{30-2 a}{3} \end{aligned}$$
$$\begin{aligned} \text{For}\quad & a=3, b=8 \\ & a=6, b=6 \\ & a=9, b=4 \\ & a=12, b=2 \\ & R=\{(3,8),(6,6),(9,4),(12,2)\} \end{aligned}$$