ExamGOAL
Books
Subjective
1

Find the value of $\tan ^{-1}\left(\tan \frac{5 \pi}{6}\right)+\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$.

2

Evaluate $\cos \left[\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)+\frac{\pi}{6}\right]$.

3

Prove that $\cot \left(\frac{\pi}{4}-2 \cot ^{-1} 3\right)=7$.

4

Find the value of $\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)+\cot ^{-1}\left(\frac{1}{\sqrt{3}}\right)+\tan ^{-1}\left[\sin \left(\frac{-\pi}{2}\right)\right]$.

5

Find the value of $\tan ^{-1}\left(\tan \frac{2 \pi}{3}\right)$.

6

Show that $2 \tan ^{-1}(-3)=\frac{-\pi}{2}+\tan ^{-1}\left(\frac{-4}{3}\right)$.

7

Find the real solution of $$\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^2+x+1}=\frac{\pi}{2} .$$

8

Find the value of $\sin \left(2 \tan ^{-1} \frac{1}{3}\right)+\cos \left(\tan ^{-1} 2 \sqrt{2}\right)$.

9

If $2 \tan ^{-1}(\cos \theta)=\tan ^{-1}(2 \operatorname{cosec} \theta)$, then show that $\theta=\frac{\pi}{4}$, where $n$ is any integer.

10

Show that $\cos \left(2 \tan ^{-1} \frac{1}{7}\right)=\sin \left(4 \tan ^{-1} \frac{1}{3}\right)$.

11

Solve the equation $\cos \left(\tan ^{-1} x\right)=\sin \left(\cot ^{-1} \frac{3}{4}\right)$.

12

Prove that $\tan ^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right)=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^2.$

13

Find the simplified form of $$ \cos ^{-1}\left(\frac{3}{5} \cos x+\frac{4}{5} \sin x\right) \text {, where } x \in\left[\frac{-3 \pi}{4}, \frac{\pi}{4}\right] $$

14

Prove that $\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{77}{85}$.

15

Show that $\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}=\tan ^{-1} \frac{63}{16}$.

16

Prove that $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\sin ^{-1} \frac{1}{\sqrt{5}}$.

17

Find the value of $4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}$.

18

Show that $\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\frac{4-\sqrt{7}}{3}$ and justify why the other value $\frac{4+\sqrt{7}}{3}$ is ignored?

19

If $a_1, a_2, a_3, \ldots, a_n$ is an arithmetic progression with common difference $d$, then evaluate the following expression.

$$\begin{aligned} \tan \left[\tan ^{-1}\left(\frac{d}{1+a_1 a_2}\right)+\tan ^{-1}\left(\frac{d}{1+a_2 a_3}\right)\right. & +\tan ^{-1}\left(\frac{d}{1+a_3 a_4}\right) \\ & \left.+\ldots+\tan ^{-1}\left(\frac{d}{1+a_{n-1} a_n}\right)\right] \end{aligned}$$

MCQ Single Correct
20

Which of the following is the principal value branch of $\cos ^{-1} x$ ?

21

Which of the following is the principal value branch of $\operatorname{cosec}^{-1} x$ ?

22

If $3 \tan ^{-1} x+\cot ^{-1} x=\pi$, then $x$ equals to

23

The value of $\sin ^{-1}\left[\cos \left(\frac{33 \pi}{5}\right)\right]$ is

24

The domain of the function $\cos ^{-1}(2 x-1)$ is

25

The domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$ is

26

If $\cos \left(\sin ^{-1} \frac{2}{5}+\cos ^{-1} x\right)=0$, then $x$ is equal to

27

The value of $\sin \left[2 \tan ^{-1}(0.75)\right]$ is

28

The value of $\cos ^{-1}\left(\cos \frac{3 \pi}{2}\right)$ is

29

The value of $2 \sec ^{-1} 2+\sin ^{-1}\left(\frac{1}{2}\right)$ is

30

If $\tan ^{-1} x+\tan ^{-1} y=\frac{4 \pi}{5}$, then $\cot ^{-1} x+\cot ^{-1} y$ equals to

31

If $\sin ^{-1}\left(\frac{2 a}{1+a^2}\right)+\cos ^{-1}\left(\frac{1-a^2}{1+a^2}\right)=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$, where $\left.a, x \in\right] 0,1[$, then the value of $x$ is

32

The value of $\cot \left[\cos ^{-1}\left(\frac{7}{25}\right)\right]$ is

33

The value of $\tan \left(\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}}\right)$ is

34

If $|x| \leq 1$, then $2 \tan ^{-1} x+\sin ^{-1}\left(\frac{2 x}{1+x^2}\right)$ is equal to

35

If $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=3 \pi$, then $\alpha(\beta+\gamma)+\beta(\gamma+\alpha)+\gamma(\alpha+\beta)$ equals to

36

The number of real solutions of the equation $\sqrt{1+\cos 2 x}=\sqrt{2} \cos ^{-1}(\cos x)$ in $\left[\frac{\pi}{2}, \pi\right]$ is

37

If $\cos ^{-1} x>\sin ^{-1} x$, then

Fill in the Blanks
True of False