Let $A=[-1,1]$, then, discuss whether the following functions defined on $A$ are one-one onto or bijective.
(i) $f(x)=\frac{x}{2}\quad$ (ii) $g(x)=|x|$
(iii) $h(x)=x|x|\quad$ (iv) $k(x)=x^2$
Given that, $$A=[-1,1]$$
(i) $f(x)=\frac{x}{2}$
$$\begin{array}{ll} \text { Let } & f\left(x_1\right)=f\left(x_2\right) \\ \Rightarrow & \frac{x_1}{2}=\frac{x_2}{2} \Rightarrow x_1=x_2 \end{array}$$
So, $f(x)$ is one-one.
Now, let $$y=\frac{x}{2}$$
$$\begin{array}{ll} \Rightarrow & x=2 y \notin A, \forall y \in A \\ \text { As for } & y=1 \in A, x=2 \notin A \end{array}$$
So, $f(x)$ is not onto.
Also, $f(x)$ is not bijective as it is not onto.
(ii) $g(x)=|x|$
Let $$g\left(x_1\right)=g\left(x_2\right)$$
So, $g(x)$ is not one-one.
Now, $\quad y=|x| \Rightarrow x= \pm y \notin A, \forall y \in A$
So, $g(x)$ is not onto, also, $g(x)$ is not bijective.
(iii) $h(x)=x|x|$
$$\begin{aligned} &\begin{aligned} \text { Let } \quad h\left(x_1\right) & =h\left(x_2\right) \\ \Rightarrow\quad x_1\left|x_1\right| & =x_2\left|x_2\right| \quad \Rightarrow x_1=x_2 \end{aligned} \end{aligned}$$
So, $h(x)$ is one-one.
$$\begin{array}{ll} \text { Now, let } & y=x|x| \\ \Rightarrow & y=x^2 \in A, \forall x \in A \end{array}$$
So, $h(x)$ is onto also, $h(x)$ is a bijective.
(iv) $k(x)=x^2$
$$\begin{aligned} &\begin{aligned} \text { Let }\quad k\left(x_1\right) & =k\left(x_2\right) \\ x_1^2 & =x_2^2 \Rightarrow x_1= \pm x_2 \end{aligned} \end{aligned}$$
Thus, $k(x)$ is not one-one.
Now, let $$y=x^2$$
$$\Rightarrow \quad x=\sqrt{y} \notin A, \forall y \in A$$
As for $y=-1, x=\sqrt{-1} \notin A$
Hence, $k(x)$ is neither one-one nor onto.
Each of the following defines a relation of $N$
(i) $x$ is greater than $y, x, y \in N$.
(ii) $x+y=10, x, y \in N$.
(iii) $x y$ is square of an integer $x, y \in N$.
(iv) $x+4 y=10, x, y \in N$
Determine which of the above relations are reflexive, symmetric and transitive.
$$\begin{array}{r} \text { (i) } x \text { is greater than } y, x, y \in N \\ (x, x) \in R \end{array}$$
For $x R x \quad x>x$ is not true for any $x \in N$.
Therefore, $R$ is not reflexive.
$$\begin{aligned} \text{Let}\quad (x, y) & \in R \Rightarrow x R y \\ x & >y \end{aligned}$$
but $y>x$ is not true for any $x, y \in N$
Thus, $R$ is not symmetric.
Let $x R y$ and $y R z$
$x>y$ and $y>z \Rightarrow x>z$
$x R z$
So, R is transitive.
(ii) $x+y=10, x, y \in N$
$$\begin{aligned} & R=\{(x, y) ; x+y=10, x, y \in \mathcal{N}\} \\ & R=\{(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1)\}(1,1) \notin R \end{aligned}$$
So, $R$ is not reflexive.
$$(x, y) \in R \quad \Rightarrow \quad(y, x) \in R$$
Therefore, $R$ is symmetric.
$$(1,9) \in R,(9,1) \in R \quad \Rightarrow \quad(1,1) \notin R$$
Hence, $R$ is not transitive.
(iii) Given $x y$, is square of an integer $x, y \in N$.
$$\Rightarrow \quad \begin{aligned} R & =\{(x, y): x y \text { is a square of an integer } x, y \in N\} \\ (x, x) & \in R, \forall x \in N \end{aligned}$$
As $x^2$ is square of an integer for any $x \in N$.
Hence, $R$ is reflexive.
If $$(x, y) \in R \Rightarrow(y, x) \in R$$
Therefore, $R$ is symmetric.
If $$(x, y) \in R,(y, z) \in R$$
So, $x y$ is square of an integer and $y z$ is square of an integer.
Let $x y=m^2$ and $y z=n^2$ for some $m, n \in Z$
$$\begin{aligned} & x=\frac{m^2}{y} \text { and } z=\frac{x^2}{y} \\ & x z=\frac{m^2 n^2}{y^2}, \text { which is square of an integer. } \end{aligned}$$
So, $R$ is transitive.
$$\begin{aligned} &\begin{aligned} \text { (iv) } & x+4 y=10, x, y \in N \\ & R=\{(x, y): x+4 y=10, x, y \in N\} \\ & R=\{(2,2),(6,1)\} \\ &(1,1),(3,3), \ldots, \notin R \end{aligned} \end{aligned}$$
Thus, $R$ is not reflexive.
$$(6,1) \in R \text { but }(1,6) \notin R$$
Hence, $R$ is not symmetric.
$$\begin{aligned} (x, y) \in R & \Rightarrow x+4 y=10 \text { but }(y, z) \in R \\ y+4 z=10 & \Rightarrow(x, z) \in R \end{aligned}$$
So, $R$ is transitive.
Let $A=\{1,2,3, \ldots, 9\}$ and $R$ be the relation in $A \times A$ defined by $(a, b) R(c, d)$ if $a+d=b+c$ for $(a, b),(c, d)$ in $A \times A$. Prove that $R$ is an equivalence relation and also obtain the equivalent class $[(2,5)]$.
Given that, $A=\{1,2,3, \ldots, 9\}$ and $(a, b) R(c, d)$ if $a+d=b+c$ for $(a, b) \in A \times A$ and $(c, d) \in A \times A$.
Let $(a, b) R(a, b)$
$$\Rightarrow \quad a+b=b+a, \forall a, b \in A$$
which is true for any $a, b \in A$.
Hence, $R$ is reflexive.
Let $(a, b) R(c, d)$
$$\begin{aligned} & a+d=b+c \\ & c+b=d+a \quad \Rightarrow \quad(c, d) R(a, b) \end{aligned}$$
So, $R$ is symmetric.
$$\begin{aligned} &\text { Let }\\ &\begin{aligned} (a, b) R(c, d) \text { and } & (c, d) R(e, f) \\ a+d & =b+c \text { and } c+f=d+e \\ a+d & =b+c \text { and } d+e=c+f \\ (a+d)-(d+e) & =(b+c)-(c+f) \\ (a-e) & =b-f \\ a+f & =b+e \\ (a, b) & R(e, f) \end{aligned} \end{aligned}$$
So, $R$ is transitive.
Hence, $R$ is an equivalence relation.
Now, equivalence class containing $[(2,5)]$ is $\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}$.
Using the definition, prove that the function $f: A \rightarrow B$ is invertible if and only if $f$ is both one-one and onto.
A function $f: X \rightarrow Y$ is defined to be invertible, if there exist a function $g=Y \rightarrow X$ such that gof $=I_X$ and fog $=I_Y$. The function is called the inverse of $f$ and is denoted by $f^{-1}$. A function $f=X \rightarrow Y$ is invertible iff $f$ is a bijective function.
Functions $f, g: R \rightarrow R$ are defined, respectively, by $f(x)=x^2+3 x+1$, $g(x)=2 x-3$, find
(i) $f \circ g$ (ii) $g \circ f$ (iii) $f \circ f$ (iv) $g \circ g$
Given that,
$$f(x)=x^2+3 x+1, g(x)=2 x-3$$
(i)
$$\begin{aligned} f \circ g & =f\{g(x)\}=f(2 x-3) \\ & =(2 x-3)^2+3(2 x-3)+1 \\ & =4 x^2+9-12 x+6 x-9+1=4 x^2-6 x+1 \end{aligned}$$
(ii)
$$\begin{aligned} g \circ f & =g\{f(x)\}=g\left(x^2+3 x+1\right) \\ & =2\left(x^2+3 x+1\right)-3 \\ & =2 x^2+6 x+2-3=2 x^2+6 x-1 \end{aligned}$$
(iii)
$$\begin{aligned} f \circ f & =f\{f(x)\}=f\left(x^2+3 x+1\right) \\ & =\left(x^2+3 x+1\right)^2+3\left(x^2+3 x+1\right)+1 \\ & =x^4+9 x^2+1+6 x^3+6 x+2 x^2+3 x^2+9 x+3+1 \\ & =x^4+6 x^3+14 x^2+15 x+5 \end{aligned}$$
(iv)
$$\begin{aligned} g \circ g & =g\{g(x)\}=g(2 x-3) \\ & =2(2 x-3)-3 \\ & =4 x-6-3=4 x-9 \end{aligned}$$