ExamGOAL
Books
10
Subjective

Let $C$ be the set of complex numbers. Prove that the mapping $f: C \rightarrow R$ given by $f(z)=|z|, \forall z \in C$, is neither one-one nor onto.

Explanation

$$\begin{aligned} \text{The mapping}\quad & f: C \rightarrow R \\ \text{Given, }\quad & f(z)=|z|, \forall z \in C \\ & f(1)=|1|=1 \\ & f(-1)=|-1|=1 \\ & f(1)=f(-1) \\ \text{But }\quad & 1 \neq-1 \end{aligned}$$

So, $f(z)$ is not one-one. Also, $f(z)$ is not onto as there is no pre-image for any negative element of $R$ under the mapping $f(z)$.

11
Subjective

Let the function $f: R \rightarrow R$ be defined by $f(x)=\cos x, \forall x \in R$. Show that $f$ is neither one-one nor onto.

Explanation

Given function, $f(x)=\cos x, \forall x \in R$

Now, $$f\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}=0$$

$$\begin{array}{lc} \Rightarrow & f\left(\frac{-\pi}{2}\right)=\cos \frac{\pi}{2}=0 \\ \Rightarrow & f\left(\frac{\pi}{2}\right)=f\left(\frac{-\pi}{2}\right) \\ \text { But } & \frac{\pi}{2} \neq \frac{-\pi}{2} \end{array}$$

So, $f(x)$ is not one-one.

Now, $f(x)=\cos x, \forall x \in R$ is not onto as there is no pre-image for any real number. Which does not belonging to the intervals $[-1,1]$, the range of $\cos x$.

12
Subjective

Let $X=\{1,2,3\}$ and $Y=\{4,5\}$. Find whether the following subsets of $X \times Y$ are functions from $X$ to $Y$ or not.

(i) $f=\{(1,4),(1,5),(2,4),(3,5)\}$

(ii) $g=\{(1,4),(2,4),(3,4)\}$

(iii) $h=\{(1,4),(2,5),(3,5)\}$

(iv) $k=\{(1,4),(2,5)\}$

Explanation

Given that,

$$\begin{aligned} X & =\{1,2,3\} \text { and } Y=\{4,5\} \\ X \times Y & =\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\} \end{aligned}$$

(i) $f=\{(1,4),(1,5),(2,4),(3,5)\}$

$f$ is not a function because $f$ has not unique image.

(ii) $g=\{(1,4),(2,4),(3,4)\}$

Since, $g$ is a function as each element of the domain has unique image.

(iii) $h=\{(1,4),(2,5),(3,5)\}$

It is clear that $h$ is a function.

(iv) $k=\{(1,4),(2,5)\}$

$k$ is not a function as 3 has not any image under the mapping.

13
Subjective

If functions $f: A \rightarrow B$ and $g: B \rightarrow A$ satisfy $g \circ f=I_A$, then show that $f$ is one-one and $g$ is onto.

Explanation

Given that,

$f: A \rightarrow B$ and $g: B \rightarrow A$ satisfy $g \circ f=I_A$

$$\begin{aligned} \because\quad g \circ f & =I_A \\ \Rightarrow\quad\operatorname{g\circ f}\left\{f\left(x_1\right)\right\} & =g \circ f\left\{f\left(x_2\right)\right\} \\ \Rightarrow\quad g\left(x_1\right) & =g\left(x_2\right) \quad \left[\because g \circ f=I_A\right]\\ \therefore\quad x_1 & =x_2 \end{aligned}$$

Hence, f is one-one and g is onto.

14
Subjective

Let $f: R \rightarrow R$ be the function defined by $f(x)=\frac{1}{2-\cos x}, \forall x \in R$. Then, find the range of $f$.

Explanation

$$\begin{aligned} \text{Given function,}\quad & f(x)=\frac{1}{2-\cos x}, \forall x \in R \\ \text{Let,}\quad & y=\frac{1}{2-\cos x} \\ \Rightarrow\quad & 2 y-y \cos x=1 \\ \Rightarrow\quad & y \cos x=2 y-1 \\ \Rightarrow\quad & \cos x=\frac{2 y-1}{y}=2-\frac{1}{y} \Rightarrow \cos x=2-\frac{1}{y} \\ \Rightarrow\quad & -1 \leq \cos x \leq 1 \quad \Rightarrow \quad-1 \leq 2-\frac{1}{y} \leq 1 \\ \Rightarrow\quad & -3 \leq-\frac{1}{y} \leq-1 \quad \Rightarrow \quad 1 \leq \frac{1}{y} \leq 3 \\ \Rightarrow\quad & \frac{1}{3} \leq \frac{1}{y} \leq 1 \end{aligned}$$

So, $y$ range is $\left[\frac{1}{3}, 1\right]$.