95
If $A$ and $B$ are any two matrices of the same order, then $(A B)^{\prime}=A^{\prime} B^{\prime}$.
A
TRUE
B
FALSE
96
Q. 96 If $(A B)^{\prime}=B^{\prime} A^{\prime}$, where $A$ and $B$ are not square matrices, then number of rows in $A$ is equal to number of columns in $B$ and number of columns in $A$ is equal to number of rows in $B$.
A
TRUE
B
FALSE
97
If $A, B$ and $C$ are square matrices of same order, then $A B=A C$ always implies that $B=C$.
A
TRUE
B
FALSE
98
$A A^{\prime}$ is always a symmetric matrix for any matrix $A$.
A
TRUE
B
FALSE
99
If $A=\left|\begin{array}{ccc}2 & 3 & -1 \\ 1 & 4 & 2\end{array}\right|$ and $B=\left|\begin{array}{cc}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right|$, then $A B$ and $B A$ are defined and equal.
A
TRUE
B
FALSE