98
$A A^{\prime}$ is always a symmetric matrix for any matrix $A$.
A
TRUE
B
FALSE
99
If $A=\left|\begin{array}{ccc}2 & 3 & -1 \\ 1 & 4 & 2\end{array}\right|$ and $B=\left|\begin{array}{cc}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right|$, then $A B$ and $B A$ are defined and equal.
A
TRUE
B
FALSE
100
If $A$ is skew-symmetric matrix, then $A^2$ is a symmetric matrix.
A
TRUE
B
FALSE
101
$(A B)^{-1}=A^{-1} \cdot B^{-1}$, where $A$ and $B$ are invertible matrices satisfying commutative property with respect to multiplication.
A
TRUE
B
FALSE