Find the matrix $A$ satisfying the matrix equation $$ \left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right] A\left[\begin{array}{cc} -3 & 2 \\ 5 & -3 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] . $$
We have, $$ \left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right]_{2 \times 2} A \cdot\left[\begin{array}{cc} -3 & 2 \\ 5 & -3 \end{array}\right]_{2 \times 2}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]_{2 \times 2} $$
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]_{2 \times 2}$
$$\begin{array}{ll} \therefore & {\left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right]\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]\left[\begin{array}{cc} -3 & 2 \\ 5 & -3 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]} \\ \Rightarrow & {\left[\begin{array}{cc} 2 a+c & 2 b+d \\ 3 a+2 c & 3 b+2 d \end{array}\right]\left[\begin{array}{cc} -3 & 2 \\ 5 & -3 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]} \\ \Rightarrow & {\left[\begin{array}{cc} -6 a-3 c+10 b+5 d & 4 a+2 c-6 b-3 d \\ -9 a-6 c+15 b+10 d & 6 a+4 c-9 b-6 d \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]} \\ \Rightarrow & -6 a-3 c+10 b+5 d=1\quad\text{.... (i)} \end{array}$$
$$\begin{array}{lr} \Rightarrow & 4 a+2 c-6 b-3 d=0 \quad\text{.... (ii)}\\ \Rightarrow & -9 a-6 c+15 b+10 d=0 \quad\text{.... (iii)}\\ \Rightarrow & 6 a+4 c-9 b-6 d=1\quad\text{.... (iv)} \end{array}$$
On adding Eqs. (i) and (iv), we get
$$c+b-d=2 \Rightarrow d=c+b-2\quad\text{.... (v)}$$
On adding Eqs. (ii) and (iii), we get
$$-5 a-4 c+9 b+7 d=0\quad\text{.... (vi)}$$
On adding Eqs. (vi) and (iv), we get
$$a+0+0+d=1 \Rightarrow d=1-a\quad\text{.... (vii)}$$
From Eqs. (v) and (vii),
$$c+b-2=1-a \Rightarrow a+b+c=3\quad\text{.... (viii)}$$
$$\Rightarrow \quad a=3-b-c$$
$$\begin{aligned} &\text { Now, using the values of a and } d \text { in Eq. (iii), we get }\\ &\begin{array}{l} & -9(3-b-c)-6 c+15 b+10(-2+b+c) =0 \\ \Rightarrow & -27+9 b+9 c-6 c+15 b-20+10 b+10 c =0 \\ \Rightarrow & 34 b+13 c =47\quad\text{.... (ix)} \end{array} \end{aligned}$$
$$\begin{aligned} &\text { Now, using the values of a and } d \text { in Eq. (ii), we get }\\ &\begin{array}{lrl} & 4(3-b-c)+2 c-6 b-3(b+c-2) \\ \Rightarrow & 12-4 b-4 c+2 c-6 b-3 b-3 c+6 =0 \\ \Rightarrow & -13 b-5 c =-18\quad\text{.... (x)} \end{array} \end{aligned}$$
On multiplying Eq. (ix) by 5 and Eq. (x) by 13, then adding, we get
$\begin{gathered}-169 b-65 c=-234 \\ \frac{170 b+65 c=235}{b=1}\end{gathered}$
$$\begin{array}{ll} \Rightarrow & -13 \times 1-5 c=-18 \quad\text{[from Eq. (x)]}\\ \Rightarrow & -5 c=-18+13=-5 \Rightarrow c=1 \\ \therefore & a=3-1-1=1 \text { and } d=1-1=0 \\ \therefore & A=\left[\begin{array}{ll} 1 & 1 \\ 1 & 0 \end{array}\right] \end{array}$$
Find $A$, if $\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right] A=\left[\begin{array}{lll}-4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3\end{array}\right]$.
We have, $\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]_{3 \times 1} \quad A=\left[\begin{array}{ccc}-4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3\end{array}\right]_{3 \times 3}$
$$\begin{gathered} \text{Let}\quad A=[x y z] \\ \therefore\quad {\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]_{3 \times 1}[x y y z]_{1 \times 3}=\left[\begin{array}{ccc} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{array}\right]_{3 \times 3}} \\ \Rightarrow\quad {\left[\begin{array}{ccc} 4 x & 4 y & 4 z \\ x & y & z \\ 3 x & 3 y & 3 z \end{array}\right]=\left[\begin{array}{ccc} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{array}\right]} \end{gathered}$$
$$\begin{array}{ll} \Rightarrow & 4 x=-4 \Rightarrow x=-1,4 y=8 \\ \Rightarrow & y=2 \text { and } 4 z=4 \\ \Rightarrow & z=1 \\ \therefore & A=\left[\begin{array}{lll} -1 & 2 & 1 \end{array}\right] \end{array}$$
If $A\left[\begin{array}{cc}3 & -4 \\ 1 & 1 \\ 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]$, then verify $(B A)^2 \neq B^2 A^2$.
We have, $$ A=\left[\begin{array}{cc} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{array}\right]_{3 \times 2} \text { and } B=\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]_{2 \times 3}$$
$\therefore\quad B A=\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]_{2 \times 3}\left[\begin{array}{cc}3 & -4 \\ 1 & 1 \\ 2 & 0\end{array}\right]_{3 \times 2}$
$=\left[\begin{array}{ll}6+1+4 & -8+1+0 \\ 3+2+8 & -4+2+0\end{array}\right]=\left[\begin{array}{ll}11 & -7 \\ 13 & -2\end{array}\right]$
$$\begin{aligned} \text{and}\quad (B A) \cdot(B A) & =\left[\begin{array}{ll} 11 & -7 \\ 13 & -2 \end{array}\right]\left[\begin{array}{cc} 11 & -7 \\ 13 & -2 \end{array}\right] \\ \Rightarrow\quad (B A)^2 & =\left[\begin{array}{cc} 121-91 & -77+14 \\ 143-26 & -91+4 \end{array}\right]=\left[\begin{array}{cc} 30 & -63 \\ 117 & -87 \end{array}\right] \quad\text{... (i)}\\ \text{Also,}\quad B^2 & =B \cdot B=\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]_{2 \times 3}\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]_{2 \times 3} \end{aligned}$$
So, $B^2$ is not possible, since the $B$ is not a square matrix.
Hence, $(B A)^2 \neq B^2 A^2$.
If possible, find the value of $B A$ and $A B$, where $$ A=\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right] \text { and } B=\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right] \text {. }$$
We have, $A=\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]_{2 \times 3}$ and $B=\left[\begin{array}{ll}4 & 1 \\ 2 & 3 \\ 1 & 2\end{array}\right]_{3 \times 2}$
So, $A B$ and $B A$ both are possible.
[since, in both $A \cdot B$ and $B \cdot A$, the number of columns of first is equal to the number of rows of second.]
$$\begin{aligned} \therefore\quad A B & =\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]_{2 \times 3} \cdot\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]_{3 \times 2} \\ & =\left[\begin{array}{ll} 8+2+2 & 2+3+4 \\ 4+4+4 & 1+6+8 \end{array}\right]=\left[\begin{array}{cc} 12 & 9 \\ 12 & 15 \end{array}\right] \end{aligned}$$
$$\begin{aligned} \text{and}\quad B A & =\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]_{3 \times 2}\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]_{2 \times 3} \\ & =\left[\begin{array}{ccc} 4 \times 2+1 & 4+2 & 8+4 \\ 4+3 & 2+6 & 4+12 \\ 2+2 & 1+4 & 2+8 \end{array}\right]=\left[\begin{array}{lll} 9 & 6 & 12 \\ 7 & 8 & 16 \\ 4 & 5 & 10 \end{array}\right] \end{aligned}$$
Show by an example that for $A \neq 0, B \neq 0$ and $A B=0$.
$$\begin{aligned} \text{Let}\quad A & =\left[\begin{array}{cc} 0 & -4 \\ 0 & 2 \end{array}\right] \neq 0 \text { and } B=\left[\begin{array}{ll} 3 & 5 \\ 0 & 0 \end{array}\right] \neq 0 \\ \therefore\quad A B & =\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right]=0 \end{aligned}$$
Hence proved.