ExamGOAL
Books
96

Q. 96 If $(A B)^{\prime}=B^{\prime} A^{\prime}$, where $A$ and $B$ are not square matrices, then number of rows in $A$ is equal to number of columns in $B$ and number of columns in $A$ is equal to number of rows in $B$.

A
TRUE
B
FALSE
97

If $A, B$ and $C$ are square matrices of same order, then $A B=A C$ always implies that $B=C$.

A
TRUE
B
FALSE
98

$A A^{\prime}$ is always a symmetric matrix for any matrix $A$.

A
TRUE
B
FALSE
99

If $A=\left|\begin{array}{ccc}2 & 3 & -1 \\ 1 & 4 & 2\end{array}\right|$ and $B=\left|\begin{array}{cc}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right|$, then $A B$ and $B A$ are defined and equal.

A
TRUE
B
FALSE
100

If $A$ is skew-symmetric matrix, then $A^2$ is a symmetric matrix.

A
TRUE
B
FALSE