If $A=\frac{1}{\pi}\left[\begin{array}{cc}\sin ^{-1}(x \pi) & \tan ^{-1}\left(\frac{x}{\pi}\right) \\ \sin ^{-1}\left(\frac{x}{\pi}\right) & \cot ^{-1}(\pi x)\end{array}\right]$ and $B=\frac{1}{\pi}\left[\begin{array}{cc}-\cos ^{-1}(x \pi) & \tan ^{-1}\left(\frac{x}{\pi}\right) \\ \sin ^{-1}\left(\frac{x}{\pi}\right) & -\tan ^{-1}(\pi x)\end{array}\right]$, then $A-B$ is equal to
If $A$ and $B$ are two matrices of the order $3 \times \mathrm{m}$ and $3 \times n$, respectively and $m=n$, then order of matrix $(5 A-2 B)$ is
If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then $A^2$ is equal to
If matrix $A=\left[a_{i j}\right]_{2 \times 2}$, where $a_{i j}=1$, if $i \neq j=0$ and if $i=j$, then $A^2$ is equal to
The matrix $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]$ is a