Prove that $\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{77}{85}$.
$$\begin{aligned} &\text { We have, } \quad \sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{77}{85}\\ &\begin{aligned} \therefore \quad \text { LHS } & =\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5} \\ & =\tan ^{-1} \frac{8}{15}+\tan ^{-1} \frac{3}{4} \end{aligned} \end{aligned}$$
$$\begin{array}{ll} \text { Let } & \sin ^{-1} \frac{8}{17}=\theta_1 \Rightarrow \sin \theta_1=\frac{8}{17} \\ \Rightarrow & \tan \theta_1=\frac{8}{15} \Rightarrow \theta_1=\tan ^{-1} \frac{8}{15} \\ \text { and } & \sin ^{-1} \frac{3}{5}=\theta_2 \Rightarrow \sin \theta_2=\frac{3}{5} \\ \Rightarrow & \tan \theta_2=\frac{3}{4} \Rightarrow \theta_2=\tan ^{-1} \frac{3}{4} \end{array}$$
$=\tan ^{-1}\left[\frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15} \times \frac{3}{4}}\right] \quad\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right]$
Let $$\theta_3=\tan ^{-1} \frac{77}{36} \Rightarrow \tan \theta_3=\frac{77}{36}$$
$$\Rightarrow \quad \sin \theta_3=\frac{77}{\sqrt{5929+1296}}=\frac{77}{85}$$
$$\begin{aligned} \therefore\quad\theta_3 & =\sin ^{-1} \frac{77}{85} \\ & =\sin ^{-1} \frac{77}{85}=\text { RHS } \end{aligned}$$
Hence proved.
Alternate method
To prove, $\quad \sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{77}{85}$
Let $$\sin ^{-1} \frac{8}{17}=x$$
$\Rightarrow \quad \sin x=\frac{8}{17}$
$\Rightarrow \quad \cos x=\sqrt{1-\sin ^2 x}=\sqrt{1-\left(\frac{8}{17}\right)^2}$
$=\sqrt{\frac{289-64}{289}}=\sqrt{\frac{225}{289}}=\frac{15}{17}$
$$\begin{aligned} \text{Let}\quad\sin ^{-1} \frac{3}{5} & =y \\ \Rightarrow\quad\sin y & =\frac{3}{5} \Rightarrow \sin ^2 y=\frac{9}{25} \\ \therefore\quad\cos ^2 y & =1-\frac{9}{25} \\ \Rightarrow\quad\cos ^2 y & =\left(\frac{4}{5}\right)^2 \Rightarrow \cos y=\frac{4}{5} \end{aligned}$$
$$\begin{aligned} &\text { Now, }\\ &\begin{aligned} \sin (x+y) & =\sin x \cdot \cos y+\cos x \cdot \sin y \\ & =\frac{8}{17} \cdot \frac{4}{5}+\frac{15}{17} \cdot \frac{3}{5} \\ & =\frac{32}{85}+\frac{45}{85}=\frac{77}{85} \end{aligned} \end{aligned}$$
$$\begin{array}{lrl} \Rightarrow & (x+y) & =\sin ^{-1}\left(\frac{77}{85}\right) \\ \Rightarrow & \sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5} & =\sin ^{-1} \frac{77}{85} \end{array}$$
Show that $\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}=\tan ^{-1} \frac{63}{16}$.
We have, $\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}=\tan ^{-1} \frac{63}{16}$
Let $$\sin ^{-1} \frac{5}{13}=x$$
$$\begin{array}{lrl} \Rightarrow & \sin x & =\frac{5}{13} \\ \text { and } & \cos ^2 x & =1-\sin ^2 x \\ & \qquad=1-\frac{25}{169}=\frac{144}{169} \\ \Rightarrow & \cos x & =\sqrt{\frac{144}{169}}=\frac{12}{13} \\ \therefore & \tan x & =\frac{\sin x}{\cos x}=\frac{5 / 13}{12 / 13}=\frac{5}{12} \quad\text{.... (ii)}\\ \Rightarrow & \tan x & =5 / 12\quad\text{.... (iii)} \end{array}$$
$$\begin{aligned} \text{Again, let}\quad\cos ^{-1} \frac{3}{5} & =y \Rightarrow \cos y=\frac{3}{5} \\ \therefore\quad\sin y & =\sqrt{1-\cos ^2 y} \\ & =\sqrt{1-\left(\frac{3}{5}\right)^2}=\sqrt{1-\frac{9}{25}} \\ \sin y & =\sqrt{\frac{16}{25}}=\frac{4}{5} \\ \Rightarrow\quad\tan y & =\frac{\sin y}{\cos y}=\frac{4 / 5}{3 / 5}=\frac{4}{3}\quad\text{.... (iii)} \end{aligned}$$
$$\begin{aligned} &\text { We know that, }\\ &\begin{aligned} & \tan (x+y) =\frac{\tan x+\tan y}{1-\tan x \cdot \tan y} \\ \Rightarrow \quad & \tan (x+y) =\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12} \cdot \frac{4}{3}} \Rightarrow \tan (x+y)=\frac{\frac{15+48}{36}}{\frac{36-20}{36}} \\ \Rightarrow \quad & \tan (x+y) =\frac{63 / 36}{16 / 36} \\ \Rightarrow \quad & \tan (x+y) =\frac{63}{16} \\ \Rightarrow \quad & x+y =\tan ^{-1} \frac{63}{16} \\ \Rightarrow \quad & \tan ^{-1} \frac{5}{12}+\tan ^{-1} \frac{4}{3} =\tan ^{-1} \frac{63}{16} \end{aligned} \end{aligned}$$
Hence proved.
Prove that $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\sin ^{-1} \frac{1}{\sqrt{5}}$.
$$\begin{aligned} \text{We have,}\quad\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9} & =\sin ^{-1} \frac{1}{\sqrt{5}} \quad\text{.... (i)}\\ \text{Let}\quad\tan ^{-1} \frac{1}{4} & =x \\ \Rightarrow\quad\tan x & =\frac{1}{4} \\ \Rightarrow\quad\tan ^2 x & =\frac{1}{16} \\ \Rightarrow\quad\sec ^2 x-1 & =\frac{1}{16} \\ \Rightarrow\quad\sec ^2 x & =1+\frac{1}{16}=\frac{17}{16} \\ \Rightarrow\quad\frac{1}{\cos ^2 x} & =\frac{17}{16} \\ \Rightarrow\quad\cos ^2 x & =\frac{16}{17} \\ \Rightarrow\quad\cos ^x & =\frac{4}{\sqrt{17}} \\ \Rightarrow\quad\sin 2 x & =1-\cos ^2 x=1-\frac{16}{17}=\frac{1}{17} \\ \Rightarrow\quad\sin x & =\frac{1}{\sqrt{17}} \quad\text{.... (ii)} \end{aligned}$$
$$\begin{array}{lc} \text { Again, let } & \tan ^{-1} \frac{2}{9}=y \\ \Rightarrow & \tan y=\frac{2}{9} \Rightarrow \tan ^2 y=\frac{4}{81} \\ \Rightarrow & \sec ^2 y-1=\frac{4}{81} \\ \Rightarrow & \sec ^2 y=\frac{4}{81}+1=\frac{85}{81} \\ \Rightarrow & \cos ^2 y=\frac{81}{85} \Rightarrow \cos y=\frac{9}{\sqrt{85}} \\ \Rightarrow & \sin ^2 y=1-\cos ^2 y=1-\frac{81}{85}=\frac{4}{85} \\ \Rightarrow & \sin y=\frac{2}{\sqrt{85}}\quad\text{.... (iii)} \end{array}$$
$$\begin{aligned} \text { We know that, } \sin (x+y) & =\sin x \cdot \cos y+\cos x \cdot \sin y \\ & =\frac{1}{\sqrt{17}} \cdot \frac{9}{\sqrt{85}}+\frac{4}{\sqrt{17}} \cdot \frac{2}{\sqrt{85}} \\ & =\frac{17}{\sqrt{17} \cdot \sqrt{85}}=\frac{\sqrt{17}}{\sqrt{17} \cdot \sqrt{5}}=\frac{1}{\sqrt{5}} \\ \Rightarrow \quad(x+y) & =\sin ^{-1} \frac{1}{\sqrt{5}} \\ \Rightarrow \quad \tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9} & =\sin ^{-1} \frac{1}{\sqrt{5}} \end{aligned}$$
Hence proved.
Find the value of $4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}$.
We have, $4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}$
$$\begin{aligned} & =2 \cdot 2 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239} \quad \left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)\right]\\ & =2 \cdot\left[\tan ^{-1} \frac{\frac{2}{5}}{1-\left(\frac{1}{5}\right)^2}\right]-\tan ^{-1} \frac{1}{239} \quad\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)\right] \\ & =2 \cdot\left[\tan ^{-1}\left(\frac{\frac{2}{5}}{1-\frac{1}{25}}\right)\right]-\tan ^{-1} \frac{1}{239} \\ & =2 \cdot\left[\tan ^{-1}\left(\frac{2 / 5}{24 / 25}\right)\right]-\tan ^{-1} \frac{1}{239} \\ & =2 \tan ^{-1} \frac{5}{12}-\tan ^{-1} \frac{1}{239} \end{aligned}$$
$$ \begin{aligned} & =\tan ^{-1} \frac{2 \cdot \frac{5}{12}}{1-\left(\frac{5}{12}\right)^2}-\tan ^{-1} \frac{1}{239} \\ & =\tan ^{-1}\left(\frac{\frac{5}{6}}{1-\frac{25}{144}}\right)-\tan ^{-1} \frac{1}{239} \\ & =\tan ^{-1}\left(\frac{144 \times 5}{119 \times 6}\right)-\tan ^{-1} \frac{1}{239} \\ & =\tan ^{-1}\left(\frac{120}{119}\right)-\tan ^{-1} \frac{1}{239} \\ & =\tan ^{-1}\left(\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119} \cdot \frac{1}{239}}\right) \quad \left[\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right]\\ & =\tan ^{-1}\left(\frac{120 \times 239-119}{119 \times 239+120}\right) \end{aligned}$$
$$\begin{aligned} & =\tan ^{-1}\left[\frac{28680-119}{28441+120}\right]=\tan ^{-1} \frac{28561}{28561} \\ & =\tan ^{-1}(1)=\tan ^{-1}\left(\tan \frac{\pi}{4}\right)=\frac{\pi}{4} \end{aligned}$$
Show that $\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\frac{4-\sqrt{7}}{3}$ and justify why the other value $\frac{4+\sqrt{7}}{3}$ is ignored?
$$\begin{aligned} &\begin{aligned} \text { We have, }\quad\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right) & =\frac{4-\sqrt{7}}{3} \\ \therefore\quad\text { LHS } & =\tan \left[\frac{1}{2} \sin ^{-1}\left(\frac{3}{4}\right)\right] \end{aligned} \end{aligned}$$
Let $$\frac{1}{2} \sin ^{-1} \frac{3}{4}=\theta \Rightarrow \sin ^{-1} \frac{3}{4}=2 \theta$$
$$\begin{array}{ll} \Rightarrow & \sin 2 \theta=\frac{3}{4} \Rightarrow \frac{2 \tan \theta}{1+\tan ^2 \theta}=\frac{3}{4} \\ \Rightarrow & 3+3 \tan ^2 \theta=8 \tan \theta \\ \Rightarrow & 3 \tan ^2 \theta-8 \tan \theta+3=0 \end{array}$$
$$\begin{aligned} &\begin{array}{r} \text { Let }\quad\tan \theta=y \\ \therefore\quad 3 y^2-8 y+3=0 \end{array} \end{aligned}$$
$$\begin{aligned} \Rightarrow \quad y & =\frac{+8 \pm \sqrt{64-4 \times 3 \times 3}}{2 \times 3}=\frac{8 \pm \sqrt{28}}{6} \\ & =\frac{2[4 \pm \sqrt{7}]}{2 \cdot 3} \\ \Rightarrow \quad \tan \theta & =\frac{4 \pm \sqrt{7}}{3} \end{aligned}$$
$\Rightarrow \quad \theta=\tan ^{-1}\left[\frac{4 \pm \sqrt{7}}{3}\right]$
$\left\{\right.$ but $\frac{4+\sqrt{7}}{3}>\frac{1}{2} \cdot \frac{\pi}{2}$, since $\left.\max \left[\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)\right]=1\right\}$
$\therefore \quad$ LHS $=\tan \tan ^{-1}\left(\frac{4-\sqrt{7}}{3}\right)=\frac{4-\sqrt{7}}{3}=$ RHS