If $A$ and $B$ are invertible matrices, then which of the following is not correct?
If $x, y$ and $z$ are all different from zero and $\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0$, then the value of $x^{-1}+y^{-1}+z^{-1}$ is
The value of $\left|\begin{array}{ccc}x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x\end{array}\right|$ is
If $A$ is a matrix of order $3 \times 3$, then $|3 A|$ is equal to ............. .
If $A$ is a matrix of order $3 \times 3$, then $|3 A|=3 \times 3 \times 3|A|=27|A|$
If $A$ is invertible matrix of order $3 \times 3$, then $\left|A^{-1}\right|$ is equal to ............. .
If $A$ is invertible matrix of order $3 \times 3$, then $\left|A^{-1}\right|=\frac{1}{|A|}$. $\left[\right.$ since, $\left.|A| \cdot\left|A^{-1}\right|=1\right]$