ExamGOAL
Books
35
MCQ (Single Correct Answer)

If $x, y$ and $z$ are all different from zero and $\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0$, then the value of $x^{-1}+y^{-1}+z^{-1}$ is

A
$x y z$
B
$x^{-1} y^{-1} z^{-1}$
C
$-x-y-z$
D
$-1$
36
MCQ (Single Correct Answer)

The value of $\left|\begin{array}{ccc}x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x\end{array}\right|$ is

A
$9 x^2(x+y)$
B
$9 y^2(x+y)$
C
$3 y^2(x+y)$
D
$7 x^2(x+y)$
37

If $A$ is a matrix of order $3 \times 3$, then $|3 A|$ is equal to ............. .

Explanation

If $A$ is a matrix of order $3 \times 3$, then $|3 A|=3 \times 3 \times 3|A|=27|A|$

38

If $A$ is invertible matrix of order $3 \times 3$, then $\left|A^{-1}\right|$ is equal to ............. .

Explanation

If $A$ is invertible matrix of order $3 \times 3$, then $\left|A^{-1}\right|=\frac{1}{|A|}$. $\left[\right.$ since, $\left.|A| \cdot\left|A^{-1}\right|=1\right]$

39

If $x, y, z \in R$, then the value of $\left|\begin{array}{lll}\left(2^x+2^{-x}\right)^2 & \left(2^x-2^{-x}\right)^2 & 1 \\ \left(3^x+3^{-x}\right)^2 & \left(3^x-3^{-x}\right)^2 & 1 \\ \left(4^x+4^{-x}\right)^2 & \left(4^x-4^{-x}\right)^2 & 1\end{array}\right|$ is

Explanation

We have,

$$\begin{aligned} & \left|\begin{array}{lll} \left(2^x+2^{-x}\right)^2 & \left(2^x-2^{-x}\right)^2 & 1 \\ \left(3^x+3^{-x}\right)^2 & \left(3^x-3^{-x}\right)^2 & 1 \\ \left(4^x+4^{-x}\right)^2 & \left(4^x-4^{-x}\right)^2 & 1 \end{array}\right| \\ & =\left|\begin{array}{lll} \left(2 \cdot 2^x\right)\left(2 \cdot 2^{-x}\right) & \left(2^x-2^{-x}\right)^2 & 1 \\ \left(2 \cdot 3^x\right)\left(2 \cdot 3^{-x}\right) & \left(3^x-3^{-x}\right)^2 & 1 \\ \left(2 \cdot 4^x\right)\left(2 \cdot 4^{-x}\right) & \left(4^x-4^{-x}\right)^2 & 1 \end{array}\right|\quad \begin{array}{r} {\left[\because(a+b)^2-(a-b)^2=4 a b\right]} \\ {\left[\because C_1 \rightarrow C_1-C_2\right]} \end{array} \end{aligned}$$

$=\left|\begin{array}{lll}4 & \left(2^x-2^{-x}\right)^2 & 1 \\ 4 & \left(3^x-3^{-x}\right)^2 & 1 \\ 4 & \left(4^x-4^{-x}\right)^2 & 1\end{array}\right|=0 \quad$ [since, $C_1$ and $C_3$ are proportional to each other]