ExamGOAL
Books
82
Subjective

Find the value of $\frac{d y}{d x}$, if $y=x^{\tan x}+\sqrt{\frac{x^2+1}{2}}$.

Explanation

We have, $y=x^{\tan x}+\sqrt{\frac{x^2+1}{2}}\quad\text{.... (i)}$

Taking $u=x^{\tan x}$ and $v=\sqrt{\frac{x^2+1}{2}}$

$$\begin{aligned} \log u & =\tan x \log x \quad\text{.... (ii)}\\ \text{and}\quad v^2 & =\frac{x^2+1}{2}\quad\text{.... (iii)} \end{aligned}$$

$$\begin{aligned} &\text { On, differentiating Eq. (ii) w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{1}{u} \cdot \frac{d u}{d x} & =\tan x \cdot \frac{1}{x}+\log x \cdot \sec ^2 x \\ \Rightarrow\quad \frac{d u}{d x} & =u\left[\frac{\tan x}{x}+\log x \cdot \sec ^2 x\right] \\ & =x^{\tan x}\left[\frac{\tan x}{x}+\log x \cdot \sec ^2 x\right]\quad\text{.... (iv)} \end{aligned} \end{aligned}$$

$$\begin{aligned} &\text { Also, differentiating Eq. (iii) w.r.t. } x \text {, we get }\\ &2 v \cdot \frac{d v}{d x}=\frac{1}{2}(2 x) \Rightarrow \frac{d v}{d x}=\frac{1}{4 v} \cdot(2 x) \end{aligned}$$

$\Rightarrow \quad \frac{d v}{d x}=\frac{1}{4 \cdot \sqrt{\frac{x^2+1}{2}}} \cdot 2 x=\frac{x \cdot \sqrt{2}}{2 \sqrt{x^2+1}}$

$\Rightarrow \quad \frac{d v}{d x}=\frac{x}{\sqrt{2\left(x^2+1\right)}}\quad\text{.... (v)}$

$$\begin{aligned} \text { Now, } \quad y & =u+v \\ \therefore \quad \frac{d y}{d x} & =\frac{d u}{d x}+\frac{d v}{d x} \\ & =x^{\tan x}\left[\frac{\tan x}{x}+\log x \cdot \sec ^2 x\right]+\frac{x}{\sqrt{2\left(x^2+1\right)}} \end{aligned}$$

83
MCQ (Single Correct Answer)

If $f(x)=2 x$ and $g(x)=\frac{x^2}{2}+1$, then which of the following can be a discontinuous function?

A
$f(x)+g(x)$
B
$f(x)-g(x)$
C
$f(x) \cdot g(x)$
D
$\frac{g(x)}{f(x)}$
84
MCQ (Single Correct Answer)

The function $f(x)=\frac{4-x^2}{4 x-x^3}$ is

A
discontinuous at only one point
B
discontinuous at exactly two points
C
discontinuous at exactly three points
D
None of the above
85
MCQ (Single Correct Answer)

The set of points where the function $f$ given by $f(x)=|2 x-1| \sin x$ is differentiable is

A
$R$
B
$R-\left(\frac{1}{2}\right)$
C
$(0, \infty)$
D
None of these
86
MCQ (Single Correct Answer)

The function $f(x)=\cot x$ is discontinuous on the set

A
$\{x=n \pi: n \in Z\}$
B
$\{x=2 n \pi: n \in Z\}$
C
$\left\{x=(2 n+1) \frac{\pi}{2} ; n \in Z\right\}$
D
$\left\{x=\frac{n \pi}{2} ; n \in Z\right\}$