ExamGOAL
Books
30
Subjective

Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also, find the maximum volume.

Explanation

Let breadth and length of the rectangle be $x$ and $y$, respectively.

$$\begin{array}{lr} \because & \text { Perimeter of the rectangle }=36 \mathrm{~cm} \\ \Rightarrow & 2 x+2 y=36 \\ \Rightarrow & x+y=18 \\ \Rightarrow & y=18-x \quad\text{.... (i)} \end{array}$$

Let the rectangle is being revolved about its length $y$.

Then, volume $(V)$ of resultant cylinder $=\pi x^2 \cdot y$

$\Rightarrow \quad V=\pi x^2 \cdot(18-x) \quad\left[\because V=\pi r^2 h\right][$ [using Eq. (i) $]$

$=18 \pi x^2-\pi x^3=\pi\left[18 x^2-x^3\right]$

On differentiating both sides w.r.t. $x$, we get

$$\begin{array}{llrl} & \frac{d V}{d x} =\pi\left(36 x-3 x^2\right) \\ \text { Now, } & \frac{d V}{d x} =0 \\ \Rightarrow & 36 x =3 x^2 \end{array}$$

$$\begin{aligned} \Rightarrow \quad& 3 x^2-36 x =0 \\ \Rightarrow \quad& 3\left(x^2-12 x\right) =0 \\ \Rightarrow \quad& 3 x(x-12) =0 \\ \Rightarrow \quad& x =0, x=12 \\ \therefore \quad& x =12\quad [\because, x \neq 0] \end{aligned}$$

$$\begin{aligned} &\text { Again, differentiating w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d^2 V}{d x^2} & =\pi(36-6 x) \\ \Rightarrow \quad\left(\frac{d^2 V}{d x^2}\right)_{x=12} & =\pi(36-6 \times 12)=-36 \pi<0 \end{aligned} \end{aligned}$$

At $x=12$, volume of the resultant cylinder is the maximum.

So, the dimensions of rectangle are 12 cm and 6 cm, respectively. $\quad$ [using Eq. (i)]

$$\begin{aligned} &\therefore \text { Maximum volume of resultant cylinder, }\\ &\begin{aligned} (V)_{x=12} & =\pi\left[18 \cdot(12)^2-(12)^3\right] \\ & =\pi\left[12^2(18-12)\right] \\ & =\pi \times 144 \times 6 \\ & =864 \pi \mathrm{~cm}^3 \end{aligned} \end{aligned}$$

31
Subjective

I the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?

Explanation

$$\begin{aligned} &\text { Let length of one edge of cube be } x \text { units and radius of sphere be } r \text { units. }\\ &\begin{aligned} & \therefore \quad \text { Surface area of cube }=6 x^2 \\ & \text { and } \quad \text { surface area of sphere }=4 \pi r^2 \end{aligned} \end{aligned}$$

Also, $$6 x^2+4 \pi r^2=k\quad$$ [constant, given]

$$\begin{array}{ll} \Rightarrow & 6 x^2=k-4 \pi r^2 \\ \Rightarrow & x^2=\frac{k-4 \pi r^2}{6} \\ \Rightarrow & x=\left[\frac{k-4 \pi r^2}{6}\right]^{1 / 2}\quad\text{.... (i)} \end{array}$$

Now, volume of cube $=x^3$

and volume of sphere $=\frac{4}{3} \pi r^3$

Let sum of volume of the cube and volume of the sphere be given by

$$S=x^3+\frac{4}{3} \pi r^3=\left[\frac{k-4 \pi r^2}{6}\right]^{3 / 2}+\frac{4}{3} \pi r^3$$

On differentiating both sides w.r.t. $r$, we get

$$\begin{aligned} \frac{d S}{d r} & =\frac{3}{2}\left[\frac{k-4 \pi r^2}{6}\right]^{1 / 2} \cdot\left(\frac{-8 \pi r}{6}\right)+\frac{12}{3} \pi r^2 \\ & =-2 \pi r\left[\frac{k-4 \pi r^2}{6}\right]^{1 / 2}+4 \pi r^2 \quad\text{.... (ii)}\\ & =-2 \pi r\left[\left\{\frac{k-4 \pi r^2}{6}\right\}^{1 / 2}-2 r\right] \end{aligned}$$

$$\begin{aligned} &\begin{aligned} \text { Now, }\quad\frac{d S}{d r} & =0 \\ \Rightarrow\quad r & =0 \text { or } 2 r=\left(\frac{k-4 \pi r^2}{6}\right)^{1 / 2} \end{aligned} \end{aligned}$$

$$\begin{array}{ll} \Rightarrow & 4 r^2=\frac{k-4 \pi r^2}{6} \Rightarrow 24 r^2=k-4 \pi r^2 \\ \Rightarrow & 24 r^2+4 \pi r^2=k \Rightarrow r^2[24+4 \pi]=k \\ \therefore & r=0 \text { or } \quad r=\sqrt{\frac{k}{24+4 \pi}}=\frac{1}{2} \sqrt{\frac{k}{6+\pi}} \end{array}$$

$\therefore \quad r=0$ or $r=\sqrt{\frac{k}{24+4 \pi}}=\frac{1}{2} \sqrt{\frac{k}{6+\pi}}$

$$\begin{aligned} &\begin{aligned} \text { We know that, }\quad & r \neq 0 \\ \therefore\quad & r=\frac{1}{2} \sqrt{\frac{k}{6+\pi}} \end{aligned} \end{aligned}$$

$$\begin{aligned} &\text { Again, differentiating w.r.t. } r \text { in Eq. (ii), we get }\\ &\frac{d^2 S}{d r^2}=\frac{d}{d r}\left[-2 \pi\left\{\left(\frac{k-4 \pi r^2}{6}\right)^{1 / 2}+4 \pi r^2\right\}\right] \end{aligned}$$

$$\begin{aligned} & =-2 \pi\left[r \cdot \frac{1}{2}\left(\frac{k-4 \pi r^2}{6}\right)^{-1 / 2} \cdot\left(\frac{-8 \pi r}{6}\right)+\left(\frac{k-4 \pi r^2}{6}\right)^{1 / 2} \cdot 1\right]+4 \pi \cdot 2 r \\ & =-2 \pi\left[r \cdot \frac{1}{2 \sqrt{\frac{k-4 \pi r^2}{6}}} \cdot\left(\frac{-8 \pi r}{6}\right)+\sqrt{\frac{k-4 \pi r^2}{6}}\right]+8 \pi r \end{aligned}$$

$$\begin{aligned} & =-2 \pi\left[\frac{-8 \pi r^2+12\left(k-\frac{4 \pi r^2}{6}\right)}{12 \sqrt{\frac{k-4 \pi r^2}{6}}}\right]+8 \pi r \\ & =-2 \pi\left[\frac{-48 \pi r^2+72 k-48 \pi r^2}{72 \sqrt{\frac{k-4 \pi r^2}{6}}}\right]+8 \pi r=-2 \pi\left[\frac{-96 \pi r^2+72 k}{72 \sqrt{\frac{k-4 \pi r^2}{6}}}\right]+8 \pi r>0 \end{aligned}$$

For $r=\frac{1}{2} \sqrt{\frac{k}{6+\pi}}$, then the sum of their volume is minimum.

For $r=\frac{1}{2} \sqrt{\frac{k}{6+\pi}}\quad$, $$x=\left[\frac{k-4 \pi \cdot \frac{1}{4} \frac{k}{(6+\pi)}}{6}\right]^{1 / 2}$$

$=\left[\frac{(6+\pi) k-\pi k}{6(6+\pi)}\right]^{1 / 2}=\left[\frac{k}{6+\pi}\right]^{1 / 2}=2 r$

Since, the sum of their volume is minimum when $x=2 r$.

Hence, the ratio of an edge of cube to the diameter of the sphere is $1: 1$.

32
Subjective

If $A B$ is a diameter of a circle and $C$ is any point on the circle, then show that the area of $\triangle A B C$ is maximum, when it is isosceles.

Explanation

We have, $$A B=2 r$$

and $\angle A C B=90^{\circ} \quad$ [since, angle in the semi-circle is always $90^{\circ}$ ]

Let $A C=x$ and $B C=y$

$$\begin{array}{ll} \therefore & (2 r)^2=x^2+y^2 \\ \Rightarrow & y^2=4 r^2-x^2 \\ \Rightarrow & y=\sqrt{4 r^2-x^2}\quad\text{.... (i)} \end{array}$$

$$\begin{aligned} \text { Now, } \quad \quad \text { area of } \triangle A B C, A & =\frac{1}{2} \times x \times y \\ & =\frac{1}{2} \times x \times\left(4 r^2-x^2\right)^{1 / 2}\quad\text{[using Eq. (i)]} \end{aligned}$$

$$\begin{aligned} &\text { Now, differentiating both sides w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d A}{d x} & =\frac{1}{2}\left[x \cdot \frac{1}{2}\left(4 r^2-x^2\right)^{-1 / 2} \cdot(0-2 x)+\left(4 r^2-x^2\right)^{1 / 2} \cdot 1\right] \\ & =\frac{1}{2}\left[\frac{-2 x^2}{2 \sqrt{4 r^2-x^2}}+\left(4 r^2-x^2\right)^{1 / 2}\right] \end{aligned} \end{aligned}$$

$$\begin{aligned} & =\frac{1}{2}\left[\frac{-x^2}{\sqrt{4 r^2-x^2}}+\sqrt{4 r^2-x^2}\right] \\ & =\frac{1}{2}\left[\frac{-x^2+4 r^2-x^2}{\sqrt{4 r^2-x^2}}\right]=\frac{1}{2}\left[\frac{-2 x^2+4 r^2}{\sqrt{4 r^2-x^2}}\right] \end{aligned}$$

$$\begin{array}{lrl} \Rightarrow & \frac{d A}{d x} & =\left[\frac{\left(-x^2+2 r^2\right)}{\sqrt{4 r^2-x^2}}\right] \\ \text { Now, } & \frac{d A}{d x} & =0 \\ \Rightarrow & -x^2+2 r^2 & =0 \\ \Rightarrow & r^2 & =\frac{1}{2} x^2 \\ \Rightarrow & r & =\frac{1}{\sqrt{2}} x \\ \therefore & x & =r \sqrt{2} \end{array}$$

Again, differentiating both sides w.r.t. x, we get

$$\begin{aligned} \frac{d^2 A}{d x^2} & =\frac{\sqrt{4 r^2-x^2} \cdot(-2 x)+\left(2 r^2-x^2\right) \cdot \frac{1}{2}\left(4 r^2-x^2\right)^{-1 / 2}(-2 x)}{\left(\sqrt{4 r^2-x^2}\right)^2} \\ & =\frac{-2 x\left[\sqrt{4 r^2-x^2}+\left(2 r^2-x^2\right) \cdot \frac{1}{2 \sqrt{4 r^2-x^2}}\right]}{\left(\sqrt{4 r^2-x^2}\right)^2} \\ & =\frac{-4 x \cdot\left(\sqrt{4 r^2-x^2}\right)^2+\left(2 r^2-x^2\right)(-2 x)}{2 \cdot\left(4 r^2-x^2\right)^{3 / 2}} \\ & =\frac{-4 x\left(4 r^2-x^2\right)+\left(2 r^2-x^2\right) \cdot(-2 x)}{2 \cdot\left(4 r^2-x^2\right)^{3 / 2}} \\ & =\frac{-16 x r^2+4 x^3+\left(2 r^2-x^2\right)(-2 x)}{2 \cdot\left(4 r^2-x^2\right)^{3 / 2}} \end{aligned}$$

$$\begin{aligned} \left(\frac{d^2 A}{d x^2}\right)_{x=r \sqrt{2}} & =\frac{-16 \cdot r \sqrt{2} \cdot r^2+4 \cdot(r \sqrt{2})^3+\left[2 r^2-(r \sqrt{2})^2\right] \cdot(-2 \cdot r \sqrt{2})}{2 \cdot\left(4 r^2-2 r^2\right)^{3 / 2}} \quad[\because x=r \sqrt{2}] \\ & =\frac{-16 \sqrt{2} \cdot r^3+8 \sqrt{2} r^3}{2\left(2 r^2\right)^{3 / 2}}=\frac{8 \sqrt{2} r^2[r-2 r]}{4 r^3} \\ & =\frac{-8 \sqrt{2} r^3}{4 r^3}=-2 \sqrt{2}<0 \end{aligned}$$

For $x=r \sqrt{2}$, the area of triangle is maximum.

For $x=r \sqrt{2}\quad, y=\sqrt{4 r^2-(r \sqrt{2})^2}=\sqrt{2 r^2}=r \sqrt{2}$

Since, $\quad x=r \sqrt{2}=y$

Hence, the triangle is isosceles.

33
Subjective

A metal box with a square base and vertical sides is to contain $1024 \mathrm{~cm}^3$. If the material for the top and bottom costs ₹ $5 \mathrm{per} \mathrm{cm}^2$ and the material for the sides costs ₹ 2.50 per $\mathrm{cm}^2$. Then, find the least cost of the box.

Explanation

Since, volume of the box $=1024 \mathrm{~cm}^3$

Let length of the side of square base be $x \mathrm{~cm}$ and height of the box be $y \mathrm{~cm}$.

$\therefore \quad$ Volume of the box $(V)=x^2 \cdot y=1024$

Since, $\quad x^2 y=1024 \Rightarrow y=\frac{1024}{x^2}$

$$\begin{aligned} &\text { Let } C \text { denotes the cost of the box. }\\ \therefore\quad &C=2 x^2 \times 5+4 x y \times 2.50 \end{aligned}$$

$$\begin{aligned} & =10 x^2+10 x y=10 x(x+y) \\ & =10 x\left(x+\frac{1024}{x^2}\right) \\ & =\frac{10 x}{x^2}\left(x^3+1024\right) \\ \Rightarrow\quad C & =10 x^2+\frac{10240}{x}\quad\text{.... (i)} \end{aligned}$$

$$\begin{aligned} &\text { On differentiating both sides w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d C}{d x} & =20 x+10240(-x)^{-2} \\ & =20 x-\frac{10240}{x^2}\quad\text{.... (ii)} \end{aligned} \end{aligned}$$

$$\begin{array}{lrl} \text { Now, } & \frac{d C}{d x} & =0 \\ \Rightarrow & 20 x & =\frac{10240}{x^2} \\ \Rightarrow & 20 x^3 & =10240 \\ \Rightarrow & x^3 & =512=8^3 \Rightarrow x=8 \end{array}$$

$$\begin{aligned} &\text { Again, differentiating Eq. (ii) w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d^2 C}{d x^2} & =20-10240(-2) \cdot \frac{1}{x^3} \\ & =20+\frac{20480}{x^3}>0 \\ \therefore \quad\left(\frac{d^2 C}{d x^2}\right)_{x=8} & =20+\frac{20480}{512}=60>0 \end{aligned} \end{aligned}$$

For $x=8$ cost is minimum and the corresponding least cost of the box,

$$\begin{aligned} C(8) & =10 \cdot 8^2+\frac{10240}{8} \\ & =640+1280=1920 \end{aligned}$$

$$\therefore$$ Least cost ₹ $=1920$
34
Subjective

The sum of surface areas of a rectangular parallelopiped with sides $x$, $2 x$ and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if $x$ is equal to three times the radius of the sphere. Also, find the minimum value of the sum of their volumes.

Explanation

We have given that, the sum of the surface areas of a rectangular parallelopiped with sides $x, 2 x$ and $\frac{x}{3}$ and a sphere is constant.

Let $S$ be the sum of both the surface area.

$\therefore \quad S=2\left(x \cdot 2 x+2 x \cdot \frac{x}{3}+\frac{x}{3} \cdot x\right)+4 \pi r^2=k$

$$\begin{aligned} k & =2\left[2 x^2+\frac{2 x^2}{3}+\frac{x^2}{3}\right]+4 \pi r^2 \\ & =2\left[3 x^2\right]+4 \pi r^2=6 x^2+4 \pi r^2 \end{aligned}$$

$$\begin{array}{lr} \Rightarrow & 4 \pi r^2=k-6 x^2 \\ \Rightarrow & r^2=\frac{k-6 x^2}{4 \pi} \\ \Rightarrow & r=\sqrt{\frac{k-6 x^2}{4 \pi}}\quad\text{.... (i)} \end{array}$$

Let V denotes the volume of both the parallelopiped and the sphere.

Then,

$$\begin{aligned} V & =2 x \cdot x \cdot \frac{x}{3}+\frac{4}{3} \pi r^3=\frac{2}{3} x^3+\frac{4}{3} \pi r^3 \\ & =\frac{2}{3} x^3+\frac{4}{3} \pi\left(\frac{k-6 x^2}{4 \pi}\right)^{3 / 2} \\ & =\frac{2}{3} x^3+\frac{4}{3} \pi \cdot \frac{1}{8 \pi^{3 / 2}}\left(k-6 x^2\right)^{3 / 2} \\ & =\frac{2}{3} x^3+\frac{1}{6 \sqrt{\pi}}\left(k-6 x^2\right)^{3 / 2}\quad\text{.... (ii)} \end{aligned}$$

On differentiating both sides w.r.t. $x$, we get

$$\begin{aligned} \frac{d V}{d x} & =\frac{2}{3} \cdot 3 x^2+\frac{1}{6 \sqrt{\pi}} \cdot \frac{3}{2}\left(k-6 x^2\right)^{1 / 2} \cdot(-12 x) \\ & =2 x^2-\frac{12 x}{4 \sqrt{\pi}} \sqrt{k-6 x^2} \\ & =2 x^2-\frac{3 x}{\sqrt{\pi}}\left(k-6 x^2\right)^{1 / 2}\quad\text{.... (iii)} \end{aligned}$$

$$\begin{array}{ll} \because & \frac{d V}{d x}=0 \\ \Rightarrow & 2 x^2=\frac{3 x}{\sqrt{\pi}}\left(k-6 x^2\right)^{1 / 2} \end{array}$$

$$\begin{aligned} \Rightarrow \quad & 4 x^4 =\frac{9 x^2}{\pi}\left(k-6 x^2\right) \\ \Rightarrow \quad & 4 \pi x^4 =9 k x^2-54 x^4 \\ \Rightarrow \quad & 4 \pi x^4+54 x^4 =9 k x^2 \\ \Rightarrow \quad & x^4[4 \pi+54] =9 \cdot k \cdot x^2 \\ \Rightarrow \quad& x^2 =\frac{9 k}{4 \pi+54} \\ \Rightarrow \quad & x =3 \cdot \sqrt{\frac{k}{4 \pi+54}}\quad\text{.... (iv)} \end{aligned}$$

$$\begin{aligned} &\text { Again, differentiating Eq. (iii) w.r.t. } x \text {, we get }\\ &\begin{aligned} \frac{d^2 V}{d x^2} & =4 x-\frac{3}{\sqrt{\pi}}\left[x \cdot \frac{1}{2}\left(k-6 x^2\right)^{-1 / 2} \cdot(-12 x)+\left(k-6 x^2\right)^{1 / 2} \cdot 1\right] \\ & =4 x-\frac{3}{\sqrt{\pi}}\left[-6 x^2 \cdot\left(k-6 x^2\right)^{-1 / 2}+\left(k-6 x^2\right)^{1 / 2}\right] \\ & =4 x-\frac{3}{\sqrt{\pi}}\left[\frac{-6 x^2+k-6 x^2}{\sqrt{k-6 x^2}}\right] \\ & =4 x-\frac{3}{\sqrt{\pi}}\left[\frac{k-12 x^2}{\sqrt{k-6 x^2}}\right] \end{aligned} \end{aligned}$$

Now, $\left(\frac{d^2 V}{d x^2}\right)_{x=3 \cdot \sqrt{\frac{k}{4 \pi+54}}}=4 \cdot 3 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{k-12 \cdot 9 \cdot \frac{k}{4 \pi+54}}{\sqrt{k-\frac{6 \cdot 9 \cdot k}{4 \pi+54}}}\right]$

$$\begin{aligned} & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{k-\frac{108 k}{4 \pi+54}}{\sqrt{k-\frac{54 k}{4 \pi+54}}}\right] \\ & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{4 k \pi+54 k-108 k / 4 \pi+54}{\sqrt{4 k \pi+54 k-54 k / 4 \pi+54}}\right] \\ & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{4 k \pi-54 k}{\sqrt{4 k \pi} \sqrt{4 \pi+54}}\right] \\ & =12 \sqrt{\frac{k}{4 \pi+54}}-\frac{6}{\sqrt{\pi}}\left[\frac{k(2 \pi-27)}{\sqrt{k} \sqrt{16 \pi^2+216 \pi}}\right] \end{aligned}$$

For $x=3 \sqrt{\frac{k}{4 \pi+54}}$, the sum of volumes is minimum.

For $x=3 \sqrt{\frac{k}{4 \pi+54}}$, then $\quad r=\sqrt{\frac{k-6 x^2}{4 \pi}}\quad\text{[using Eq. (i)]}$

$$\begin{aligned} & =\frac{1}{2 \sqrt{\pi}} \sqrt{k-6 \cdot \frac{9 k}{4 \pi+54}} \\ & =\frac{1}{2 \sqrt{\pi}} \cdot \sqrt{\frac{4 k \pi+54 k-54 k}{4 \pi+54}} \\ & =\frac{1}{2 \sqrt{\pi}} \cdot \sqrt{\frac{4 k \pi}{4 \pi+54}}=\frac{\sqrt{k}}{\sqrt{4 \pi+54}}=\frac{1}{3} x \end{aligned}$$

$$ \begin{aligned} & \Rightarrow \quad x=3 r \quad\text{Hence proved.}\\ & \therefore \text { Minimum sum of volume, } \end{aligned}$$

$\therefore$ Minimum sum of volume,

$$\begin{aligned} \left.V_{\left(x=3 \cdot \sqrt{\frac{k}{4 \pi+54}}\right.}\right) & =\frac{2}{3} x^3+\frac{4}{3} \pi r^3=\frac{2}{3} x^3+\frac{4}{3} \pi \cdot\left(\frac{1}{3} x\right)^3 \\ & =\frac{2}{3} x^3+\frac{4}{3} \pi \cdot \frac{x^3}{27}=\frac{2}{3} x^3\left(1+\frac{2 \pi}{27}\right) \end{aligned}$$